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1
Introduction

1.1 Biometric systems

Biometrics is the science of establishing the identity of an individual based on the
physical, chemical or behavioral attributes of the person, commonly referred to as
fingerprint, face, hand geometry, iris, signature, voice, gait, or DNA information
[1]. Biometrics is becoming increasingly incorporated in various applications, such as
access control, data management, national ID, passport control, and forensics.

Unlike traditional means of identity establishment (e.g. passwords and ID cards),
which can easily be lost, shared, manipulated or stolen, biometrics offers a natural
and reliable solution to certain aspects of identity management, by utilizing fully
automated or semi-automated schemes based on an individual’s unique biological
characteristics [2]. In this way, using biometrics could guarantee that an identity
who accesses a system can not later deny it. Besides, biometrics also enhances user
convenience by alleviating the need to design and remember passwords or to carry
tokens.

Figure 1.1 illustrates how a biometric system works. An enrollment stage is first
passed to generate the biometric templates of the users. Before being stored in the
database, the captured biometric raw measurement needs to pass quality assessment
and feature extraction steps. These steps yield a compact collection of biometric fea-
tures, called the biometric template. A biometric system may be used for verification
of an identity or identification of an individual [1]. In a verification system, a user’s
identity is verified by comparing his/her biometric template to that of the claimed
identity. This is a one-to-one comparison. In an identification system, a user’s iden-
tity is established through comparing his/her template to those of all the users in the
database. This is a one-to-many comparison. The decision of choosing a verification

1
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or an identification system depends on the application context.
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Figure 1.1: The enrollment, verification and identification stages of a biometric system.

The recognition performance of a biometric system is often presented as the false
rejection rate (FRR) and the false acceptance rate (FAR). The FRR is defined as the
probability that a system will incorrectly reject an access attempt by a genuine user.
An alternative measurement of FRR is the detection rate or the genuine acceptance
rate (GAR), defined as the probability that a system will correctly accept a genuine
user. Thus:

GAR = 1− FRR , (1.1)

The other performance measurement is the FAR, defined as the probability that a
system will incorrectly accept an access attempt by an imposter. Both a low FRR
and a low FAR are favorable. However, a system aiming for a lower FAR usually has
a higher FRR and vice versa. Therefore, in designing a biometric system, the goal is
to optimize the system parameters in order to obtain a better trade-off between the
FAR and the FRR. Often this trade-off is illustrated either as a receiver operating
characteristic (ROC) curve showing the GAR against the FAR, or as a detection
error tradeoff (DET) curve showing the FRR against the FAR, at various parameter
values. The Equal Error Rate (EER), defined as the point in the DET curve where the
FAR equals the FRR, is also used to measure the system performance in comparing
different sets of parameters.



1.2. Biometric template protection 3

1.2 Biometric template protection

1.2.1 Vulnerabilities of biometric systems

Unlike passwords or ID cards, biometrics are unique, irrevocable, and may even con-
tain sensitive private information. Unfortunately, in most of the current applications,
biometric templates are stored merely as a compact collection of features that are
directly extracted from the raw measurements. As a result, biometric templates are
exposed to a number of threats: First, it is possible to recover the biometric measure-
ments from the stored template. For instance, a hill-climbing attack can be conducted
by iteratively adjusting a candidate’s face image according to the matching score of
this image and a target image in the database [3]. Second, if a sufficiently similar
biometric template of the same individual is stored in multiple application databases,
it is susceptible to cross-matching between two or more reference templates from the
same subject across different applications. Finally, biometric templates may contain
sensitive private information. In many countries, the widespread biometric applica-
tions have given rise to legislations on privacy protection of personal biometric data.

As a countermeasure to these threats, biometric template protection has become
an important issue, and therefore is the motivation of this research.

1.2.2 Requirements for a template protection system

Generally speaking, a biometric template protection system aims to prevent the abuse
of private biometric information, while maintaining the biometric recognition perfor-
mances. A biometric template protection system should satisfy the following proper-
ties [4]:

• Diversity: It should be possible to generate multiple templates from the same
user, in order to prevent cross-matching over different databases.

• Revocability: It should be straightforward to revoke a compromised template
and reissue a new one for the same user.

• Security and privacy: From the security perspective, it must be computa-
tionally hard to recover a set of biometric features that can gain access to the
biometric system. From the privacy perspective, it must be computationally
hard to recover the set of biometric features that are similar enough to those of
the user to prevent revealing private personal information.

• Recognition performance: The biometric template protection system should
not degrade the FAR and the FRR performances of the unprotected biometric.

Both diversity and revocability require the capability of generating multiple protected
templates from the same user. This could be achieved by associating the biometric
template with random variations. For instance a function with random variables or
a random key.

The security of a biometric system is quantified as the average effort for an attacker
to obtain a set of biometric features that is similar enough to gain access. Privacy is
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quantified as the average effort for an attacker to obtain a set of biometric features
that is similar enough to reveal the private information. Although defined in a similar
way, security and privacy are two different concepts and they are dependent on the
accuracy of the template protection system. For instance, in an extreme case where
the template protection scheme quantifies every user’s biometric data into a single bit
of 0 or 1, an attacker only needs to guess a 0 or 1 in order to gain access, which gives
very low security. However, the privacy is well preserved in this case, because a single
bit hardly tells anything about what the original biometric data (e.g. face or finger-
print) looks like. Another issue about security and privacy is the quantification of the
effort. Security can be quantitatively measured in terms of the effort of recovering an
accessible version of the real-valued biometric data. Privacy, however, is even more
difficult to quantify, because it is unclear how accurately a biometric template must
be determined in order to reveal private information. This, of course, also depends
on the kind of information that is looked for.

With additional template protection, the FAR and the FRR performances of a
template protection system often degrade as compared to an unprotected biometric
system. Therefore, a biometric template protected scheme is desired to maintain low
FAR and low FRR. Note that the FAR also indicates the security of the biometric
system. Forcing the system to make a false accept is sometimes called a zero-effort
attack [4].

1.2.3 Overview of template protection schemes

At present, most of the biometric template protection schemes are designed for verifi-
cation. Therefore, we give an overview of template protection methods in the context
of a verification system. The major challenge of a biometric template protection sys-
tem comes from the intra-user variations, i.e., the biometric measurements of the same
user change from instant to instant. For these reasons, it is not possible to directly
apply one-way hash functions to the extracted biometric features, as in the traditional
password based identity establishment systems. However, there are attempts to di-
rectly generate a cryptographic key from biometric features, such as biometric key
generation and fuzzy extractor. An alternative solution is to acquire a user-specific
key and use it as a guidance to generate a cryptographic key from biometric features,
such as BioHashing. Contrarily, other template protection schemes are aiming to de-
sign a computationally non-invertible function or a hash that involves error-correcting
codes (ECC), to be applied to the biometric features. These schemes are Cancelable
biometrics, Fuzzy Commitment, Helper Data, Secure Sketch and Fuzzy Vault. A
summary of the properties of these schemes are given in Table 1.1, which is a revision
from a table in [4]. A more detailed description is given below.

Biometric key generation [5], [6], [7], [8], [9], [10] and fuzzy extractor [11], [12],
[13] belong to a category of template protection schemes that directly generates a
cryptographic key from biometric features. To overcome intra-user variations, user-
specific quantization is employed in these schemes. Information about the quantiza-
tion boundary and the quantized codes are stored. Comparison is done in the discrete
domain. However, it is only possible to generate one quantized template for every
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user. To what extent the biometric features can be recovered from the stored template
depends on the quantization process.

BioHashing [14], [15], [16], [17], [18] is a template protection scheme that trans-
forms biometric features under the guidance of a user-specific key. These transformed
features are then stored as the template. In the verification stage, the transformation
is applied to the query biometric features according to the query user-specific key.
The resulting query template is then compared with the stored target template. Usu-
ally, the transformation function is known. Hence the user-specific key needs to be
securely stored or remembered by the user. If this key is compromised, the template
is compromised as well. Since one user could have multiple secrete keys, BioHashing
enables multiple templates for the same user. However, introducing extra user-specific
keys gives security responsibility to users.

Cancelable biometrics [19], [20] distort the image of a face or a fingerprint by using
a non-invertible geometric distortion function. Unlike the traditional hash function,
the non-invertible transform refers to a one-way function that is “easy to compute”
but “hard to invert” [4]. The parameters of the transform function are recorded
as a user-specific key, and therefore enables multiple templates for the same user.
In the verification stage, the user-specific key, combined with the transformation
function, is applied to the query biometric features and the result is matched against
the target template. Compared to BioHashing, even though the user-specific key
is compromised, it is still computationally hard to recover the original biometric
features. To overcome the intra-user variations, features from the same user should
be similar and features from different users should be dissimilar in the transformed
feature space. However, it is difficult to find a transformation function that provides
non-invertibility and overcome intra-user variability.

Fuzzy Commitment [21], Helper Data, [22], [23], [24], [25], Secure Sketch [26], [27],
[28], [29], [30] and Fuzzy Vault [31], [32], [33] use the noisy biometric features to bind
an error-correcting encoded random key. In the enrollment stage, a random key (K)
is generated. The key is hashed (H(K)) and stored. In the mean time, it is encoded
into a codeword C by the encoder of an error-correcting system. The codeword is then
bound with the biometric features and stored as well. In the verification stage, the
stored template releases a noisy versionC′ through the query user’s biometric features.
If C′ is similar to C, C′ can be correctly decoded into K within the error-correcting
capability. Thus, a direct “Yes/No” match can be conducted based on H(K). The
data stored in the database include H(K) as well as the bound information between
the biometric features and the codeword. The random key provides multiple templates
for the same user.

1.3 Research context

The context of this research is the development of a generic template protection
scheme for biometric verification applications. As summarized in Table 1.1, Fuzzy
Commitment, Helper Data, Secure Sketch and Fuzzy Vault are preferable, because in
these systems the diversity and the revocability of biometric templates do not depend
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on user-specific keys. From these possibilities, we choose the Helper Data scheme in
this research. Helper Data scheme is basically a Fuzzy Commitment with additional
quantization and coding of biometric features, which leads to the main topic of the
thesis. To start with, in Section 1.3.1, we present the Helper Data scheme. Once it is
adopted, the whole template protection system can be divided into three functional
modules: feature extraction, reliable bit extraction and secure key binding verifica-
tion. These modules are summarized in Section 1.3.2. Among the three modules,
reliable bit extraction is crucial for the template protection performance. Therefore,
extracting fixed-length secure binary strings from biometric features is defined as the
main purpose of this research. Finally, in Section 1.3.3, the research objectives are
presented in detail.

1.3.1 The selected template protection scheme

The Helper Data scheme [22], basically a Fuzzy commitment with additional quanti-
zation and coding of biometric features, is adopted for this research. The framework is
illustrated in Fig. 1.2. Sω and S′ represent the binary strings of an enrolled user and
a query user, respectively. They are derived from the real-valued biometric features
through a quantization and coding procedure. During the enrollment and the verifica-
tion phase, error correcting techniques are integrated in order to successfully retrieve
a randomly generated key K, when the query template S′ and the target template
Sω are within a certain number of errors. During the enrollment, the random key K
is first encoded into a codeword C of an ECC. This codeword C and the enrolled user
biometric template Sω are bound in Wω,1 by the XOR operation (Wω,1 = C ⊕ Sω).
During the verification, a noisy version of C′ is released by the same XOR operation
of Wω,1 and the query biometric string S′ (C′ = Wω,1 ⊕ S′). Afterwards, the C′ is
decoded into K ′ through the error-correcting decoding. The final “Yes/No” decision
is made by comparingK ′ and the originalK in their hashed manner. Thus, the access
is granted only when C′ can be correctly decoded into K ′ = K. Furthermore, extra
quantization information may be desirable, for instance the quantization intervals or
the number of quantization bits. In general, we denote such quantization information
as helper data Wω,2. The helper data Wω,2, together with Wω,1 and the hashed key
H(K), are stored publicly for every enrolled user ω.

To summarize, the Helper Data scheme uses a binary biometric string to bind a
random key. ECC are applied to correct the errors in these binary strings due to the
intra-class variations.

To meet the requirements of a template protection system as described in Section
1.2.2, the Helper Data system has to consider the following aspects: (1) Since the
quantization intervals and quantization bits, as helper data Wω,2, are stored publicly,
it is desirable that Wω,2 reveals minimum information of Sω. Otherwise, an attack can
search for Sω by guessing the code with the highest probability within the quantization
intervals presented in Wω,2. Retrieving Sω would breach the security and privacy.
Therefore, it is important to design quantization without revealing information of
Sω. (2) The length of the random key K determines how many keys a biometric
binary string can bind. Thus, increasing the length of K gives higher diversity and
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Figure 1.2: The framework of the Helper Data scheme. Sω and S′ represent the binary
strings of an enrolled user and a query user, respectively. K denotes a random key. C and
C′ are the error-correcting codewords. C and Sω are bound into Wω,1. Wω,2 denotes helper
data.

revocability of the template protection system. Moreover, the length of K also tells
how difficult it is to guess the random key. Since the ECC and Wω,1 are public, the
compromise of K directly leads to the compromise of Sω, which also brings security
and privacy threats. Efforts to increase the length of K involves improving the error-
correcting capability or extracting more reliable biometric bits. (3) The recognition
performance FRR indicates how a genuine key K can be correctly retrieved through
the error-correcting procedure, even when the biometric strings Sω and S′ of the same
user are different. Contrarily, the FAR indicates how a genuine key K can be falsely
retrieved, even when the biometric strings Sω and S′ are from two different users.
Obviously, the FRR and the FAR depend on both the error-correcting capability and
the reliability of the biometric bits. Thus, designing advanced ECC or extracting
reliable biometric bits would improve the recognition performances.

1.3.2 The complete template protection system and the sub-
ject of this research

As has been described above, the Helper Data scheme is chosen as the subject of
this research. Furthermore, we show that extracting biometric bits and ECC design
are two key aspects that influence the performances of the template protection. In
this Section, by taking a perspective of the entire verification system, we generalize a
template protection system into three functional modules: feature extraction, reliable
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bit extraction and secure key binding verification, as shown in Fig. 1.3. Optimizing
each of the three modules would contribute to the final performances of the template
protection system.

helper data
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Figure 1.3: Three modules generalized for the Helper Data based verification system: feature
extraction, reliable bit extraction and secure key binding verification.

1. Feature extraction: This module aims to extract independent, reliable and
discriminative real-valued features from raw measurements. Strictly speaking,
it involves quality control, image alignment, feature processing, and finally fea-
ture extraction. While quality control, image alignment and feature processing
depend on the application and the specific biometric feature modality, the fea-
ture extraction techniques can be quite common. Classical feature extraction
methods are, among others, Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) [34]. In fact, this feature extraction module,
together with the real-valued classifier applied afterwards, constitutes the con-
ventional biometric verification system.

2. Reliable bit extraction: This module aims to transform the real-valued fea-
tures into a fixed-length binary string, through quantization and coding, such
that the binary strings have a small Hamming distance if the real-valued fea-
tures are close. Biometric information is well-known for its uniqueness. Unfor-
tunately, due to sensor and user behavior, it is inevitably noisy, which leads to
intra-class variations. Therefore, the extracted bits are desired to maintain low
intra-class variations, leading to a low FRR. In the mean time, the extracted
bits should provide sufficient security. First, a low FAR. Second, in order to
maximize the attacker’s efforts in guessing the target template, the bits should
be statistically independent and identically distributed (i.i.d.).

3. Secure key binding verification: This module aims to provide verification
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when the target biometric string is protected and bound to a secret key. A
realization of such module is the Helper Data scheme presented in Section 1.3.1:
In the enrollment phase, a biometric binary string is used to bind an error-
correcting codeword, encoded from a secret key K. In the verification phase,
the key is correctly released, only when the erroneous bits in the query biometric
binary string can be corrected by the error-correcting decoding.

Usually binary ECCs are evaluated by the [n, k, t] parameters, where n, k, t
represent the length of the codeword, the number of secret bits, and the error-
correcting capability, respectively. In case of the Helper Data scheme, the length
of the codeword equals the length of the biometric strings; the number of secret
bits equals the length of the random key K. The error-correcting capability t
refers to the maximum allowed number of erroneous bits, also called Hamming
distance, between the codeword C and the noisy version C′. In the Helper Data
system, C is directly linked to the biometric binary string Sω. Thus, t also
equals the number of erroneous bits or the Hamming distance that the ECC can
correct on the biometric strings. Therefore, the secure key binding verification
essentially functions as a Hamming distance classifier (HDC) that is applied to
the n-bit biometric binary strings with a Hamming distance threshold t. More
specifically, a HDC that grant access when the Hamming distance between two
binary strings is lower than t, and vice versa.

Well-developed methods are available for both feature extraction and secure key
binding verification, such as PCA and the Helper Data scheme with a BCH code. How-
ever, the capability of quantifying real-valued biometric features into binary strings
has not yet been thoroughly studied. Therefore, in this research, we focus on the re-
liable bit extraction module which aims to extract a binary string from the biometric
features, via a quantization and coding process. Furthermore, there are a variety of
ECCs that could be applied to evaluate the performance of the binary strings. As
we know, a [n, k, t] ECC functions as a HDC applied to the n-bit binary strings with
Hamming distance threshold t. Therefore, as a generalization of a variety of ECCs,
we directly evaluate the performances of the biometric binary strings through a HDC.

1.3.3 Research objectives

This research focuses on the reliable bit extraction module. To summarize the
contents in Section 1.3.1 and 1.3.2, the research question is refined as:

How can real-valued biometric features, in a Helper Data scheme based
template protection system, be converted to a binary string, with the
following requirements?

I. Since we adopt the Helper Data scheme, the binary strings extracted from the
real-valued biometric features should be of fixed-length.

II. In order to maximize the attacker’s efforts in guessing the target template, the
bits should be statistically independent and identically distributed (i.i.d.).
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III. In order to maximize the length of the random key, the extracted bits should be
as reliable as possible, i.e. for a given user the probability of bit errors should
be as low as possible.

IV. The verification via binary strings should not degrade the FAR and the FRR
performances.

Each of these requirements is translated into a corresponding research objective. To
summarize, in this research, we aim to extract fixed-length reliable binary strings
which have i.i.d. bits, while maintaining good FAR and FRR verification performance.

1.4 Overview of the thesis

1.4.1 Main contributions

The main contributions of the thesis include two aspects: (1) how to optimize the
quantization intervals for the biometric features and (2) how to allocate the number
of quantization bits to features: First, we propose a one-dimensional quantization
scheme, as shown in Fig. 1.4(a), where every feature is individually quantized and
then concatenated into a binary string. In particular, two new one-dimensional quan-
tizers, the fixed quantizer (FQ) and the likelihood ratio based quantizer (LQ), are
presented in Chapter 2. In addition to optimizing the quantization intervals for every
feature, assigning various numbers of bits to features with different discriminative
power could also optimize the final binary string performance. Therefore, three new
bit allocation principles, the detection rate optimized bit allocation (DROBA), the
area under the FRR curve optimized bit allocation (AUF-OBA) and the weighted
area under the FRR curve optimized bit allocation (WAUF-OBA), are presented in
Chapters 3, 4 and 5. Moreover, as shown in Fig. 1.4(b), a two-dimensional quantiza-
tion scheme is proposed. The two-dimensional polar quantizer, including the phase
and the magnitude, are presented in Chapter 6. Additionally, two new pairing strate-
gies, the long-short (LS) and the long-long (LL) pairing strategies are designed for
phase and magnitude, respectively. In Chapter 7, an advanced phase quantizer, the
adaptive phase quantizer (APQ) with LS pairing strategy is presented.

1.4.2 Chapters overview

The chapters of the thesis are based on published papers. The main chapters are
Chapters 2-7, of each consists of one or more papers in their originally published
format. These papers have been published in a period of more than 4 years, during
which notations and terminologies have evolved. This has led to some notational
inconsistencies across the papers, for which we apologize. The main contributions of
the thesis and the knowledge diagram are illustrated in Fig. 1.5.

In Chapter 2, two one-dimensional quantizers, the fixed quantizer (FQ) and the
likelihood ratio based quantizer (LQ), are presented. Both quantizers are able to
extract multiple bits per biometric feature. The FQ determines the quantization in-
tervals merely by equally dividing the probability mass of the background probability
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Figure 1.4: The reliable bit extraction design based on (a) one-dimensional and (b) two-
dimensional quantization and coding, where vi, i = 1, . . . , D denotes D real-valued features.
In the two-dimensional case, ci denotes the feature index for the ith feature pair. bi and si
denote the number of quantization bits and the output bits for the ith feature or feature pair.
The final string s is the concatenation of si.
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Figure 1.5: The main contributions of the thesis and the knowledge diagram according to
chapters.

density function (PDF). The LQ determines the quantization intervals from the like-
lihood ratio between the genuine user PDF and the background PDF of the feature.
As a result, both quantizers are able to extract i.i.d. bits. Superior to FQ, LQ op-
timizes the theoretical FRR of a feature, given a prescribed number of quantization
bits. Here the theoretical FRR refers to a theoretical quantity that is optimized based
on models. It is different from the actual recognition performance that is achieved on
the real data experiments.

In Chapter 3, the detection rate optimized bit allocation (DROBA) principle is
presented. Subject to a prescribed total length of the binary string, DROBA assigns
user-dependent numbers of bits to every feature, in such way that the theoretical
overall detection rate at zero Hamming distance threshold for a HDC is optimized.
Both a dynamic programming and a greedy approach are then proposed to search
for the optimal solution. Compared to quantizing every feature into a prescribed
fixed number of bits, combining quantizers with DROBA yields better FAR and FRR
performances of the entire binary strings.

In Chapter 4, the area under the FRR curve optimized bit allocation (AUF-OBA)
principle is presented. Given the bit error probabilities of the biometric features,
AUF-OBA assigns user-dependent numbers of bits to every feature, in such way that
the theoretical area under the FRR curve for a HDC is minimized. A dynamic pro-
gramming approach is then proposed to search for the optimal solution. Superior to
DROBA, AUF-OBA optimizes the overall FRR performances, rather than the FRR
at zero Hamming distance threshold.
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In Chapter 5, the weighted area under the FRR curve optimized bit allocation
(WAUF-OBA) principle is presented. Given the bit error probabilities of the biometric
features, WAUF-OBA assigns user-dependent numbers of bits to every feature, in such
way that the theoretical weighted area under the FRR curve for a HDC is minimized.
Depending on the value of the parameter in the weighting function, different ranges
of the Hamming distance thresholds are emphasized, which makes WAUF-OBA a
generalization of DROBA and AUF-OBA. Superior to DROBA or AUF-OBA, WAUF-
OBA optimizes the overall FRR performances in the emphasized range of Hamming
distance thresholds.

In Chapter 6, a two-dimensional pairwise polar quantizer that quantizes the magni-
tude and the phase is introduced. Quantization intervals in both domains are selected
dependent on the background PDFs of the pairwise features. Furthermore, aiming
to optimize the discrimination between the genuine Hamming distance (GHD) distri-
bution and the imposter Hamming distance (IHD) distribution, two heuristic feature
pairing strategies are proposed: the long-short (LS) strategy for the phase quanti-
zation, as well as the long-long (LL) strategy for the magnitude quantization. The
phase quantizer combined with the LS pairing gives low FAR and FRR performances.

In Chapter 7, a two-dimensional pairwise adaptive phase quantizer (APQ), to-
gether with an improved long-short (LS) pairing strategy, is presented. The APQ
adjust the phase quantization intervals in order to maximize the theoretical detection
rate of a given feature pair. The LS pairing strategy composes feature pairs in order
to maximize the overall detection rate, for the total binary strings, at zero Hamming
distance threshold. With APQ and LS pairing, the extracted binary strings obtain
better FAR and FRR performances than the phase quantizer without adjustment in
Chapter 6.

In Chapter 8, conclusions and future work are given.

1.4.3 Biometric data sets

In this research, a generic Helper Data scheme is chosen, so that the template protec-
tion is not limited to a certain biometric type. Two publicly available and accepted
databases: fingerprint database FVC2000 [35], [36] and face database FRGC [37], [38]
are used in evaluation. Furthermore, in order to extract fixed-length binary strings,
the biometric features are extracted as following.

• FVC2000: The FVC2000(DB2) fingerprint data set contains 8 images of 110
users. The features were extracted in a fingerprint recognition system that was
used in [22]. As illustrated in Fig. 1.6, the raw features contain two types of
information: the squared directional field in both x and y directions, and the
Gabor response in 4 orientations (0, π/4, π/2, 3π/4). Determined by a regular
grid of 16 by 16 points with spacing of 8 pixels, measurements are taken at 256
positions, leading to a total of 1536 elements.

• FRGC: The FRGC(version 1) face data set contains 275 users with a different
number of images per user, taken under both controlled and uncontrolled con-
ditions. The number of samples s per user ranges from 4 to 36. The image size
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was 128× 128. From that a region of interest (ROI) with 8762 pixels was taken
as illustrated in Fig. 1.7.

Figure 1.6: (a) Fingerprint image, (b) directional field, (c)-(f) the absolute values of Gabor
responses for different orientations θ.

Figure 1.7: (a) Controlled image, (b) uncontrolled image, (c) landmarks and (d) the region
of interest (ROI).
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2
One-dimensional Quantizer

2.1 Chapter introduction

PURPOSE. This chapter deals with one-dimensional quantization and coding.
The purpose of this chapter is to design one-dimensional quantizers for each of
the biometric features, given a prescribed fixed number of bits per feature. The
quantizers should be capable of extracting multiple bits, that are statistically
independent and identically distributed (i.i.d.). After every feature is quantized into
a prescribed number of bits, these bits concatenate into the biometric binary string.
When applied to a Hamming distance classifier (HDC), these binary strings should
result in good recognition performance.

CONTENTS. A fixed quantizer (FQ) and a likelihood ratio based quantizer (LQ) are
presented in this chapter. As illustrated in Fig. 2.1, the FQ or the LQ are designed
to quantize features with a number of bits that is the same for every feature. The
FQ is user-independent: For every feature, the quantization intervals are merely
determined by equally dividing the probability mass of the background probability
density function (PDF), representing the probability density of the entire population.
The interval where the mean of the genuine user PDF is located, is referred to as
the genuine user interval. In contrast, LQ is user-dependent and superior to FQ:
For every feature of an enrolled user, LQ determines equal probabilistic quantization
intervals from the likelihood ratio between the genuine user PDF and the background
PDF, where the genuine user PDF represents the probability density of the genuine
user for one feature. Based on a required number of quantization intervals, the
genuine user interval is first determined by applying a threshold to the likelihood
ratio. Afterwards, the remaining intervals are expanded towards both tails of

17
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the background PDF, in such way that all the quantization intervals have equal
background probability mass. The left and the right tail constitute one wrap-around
interval. As a result, LQ minimizes the theoretical FRR per feature at Hamming
distance zero, subject to a prescribed number of quantization bits. For both
quantizers, Gray codes, in which the Hamming distance of two adjacent codewords is
limited to one single bit, are then assigned to the quantization intervals. This reduces
the number of bit errors due to the within-class variation. Because the intervals have
equal background probability, the bits assigned to each feature are i.i.d.. The bits in
the entire binary string are then i.i.d., if the biometric features are statistically inde-
pendent. Figure 2.2 shows the contribution of this chapter in the context of the thesis.

PUBLICATION(S). The content of Section 2.2 has been published in [39]. In this
paper the term ‘side-information’ is used for what is defined as ‘helper data’ in Chapter
1.
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Figure 2.1: Block diagram of a one-dimensional quantization and coding scheme, highlighted
in FQ and LQ design. The vi, i = 1 . . . D denote D independent biometric features. Since
bit allocation (in gray) is not discussed in this chapter, every feature is prescribe to a fixed
length of b-bit. The quantized bits si, i = 1 . . . D from all D features are then concatenated
into the binary string s.

2.2 Multi-bits biometric string generation based on
the likelihood ratio

Abstract
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Figure 2.2: Block diagram of the main contributions, highlighted in Chapter 2.

Preserving the privacy of biometric information stored in biometric systems is be-
coming a key issue. An important element in privacy protecting biometric systems
is the quantizer which transforms a normal biometric template into a binary string.
In this paper, we present a user-specific quantization method based on a likelihood
ratio approach (LQ). The bits generated from every feature are concatenated to form
a fixed length binary string that can be hashed to protect its privacy. Experiments
are carried out on both fingerprint data (FVC2000) and face data (FRGC). Results
show that our proposed quantization method achieves a reasonably good performance
in terms of FAR/FRR (when FAR is 10−4, the corresponding FRR are 16.7% and
5.77% for FVC2000 and FRGC, respectively).

2.2.1 Introduction

Use of biometrics has brought considerable benefits in the area of access control
and ICT security. Recently, however, protection of biometric template is becoming
more important [40], because a biometric template may reveal personal information.
Additionally, unprotected storage and transfer of biometric information allows direct
steal-and-use impersonation. Once the biometric template is compromised, it can not
be re-issued.

Biometric template protection aims to protect biometric reference information
stored in biometric systems from abuse. In the past years, several techniques were
developed to protect biometric information. In [19], [20] the authors discuss an ap-
proach known as ‘cancelable biometrics’. Before storing the image of a face or a
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fingerprint in a biometric system, it is distorted using a parametrized one-way geo-
metric distortion function. The fuzzy vault method as introduced in [32] is a general
cryptographic construction allowing to store a secret in a vault that can be locked
using an unordered set of features. An initial attempt to use the fuzzy vault scheme
in the setting of fingerprints is given in [31]. A third group of techniques, containing
fuzzy commitments [21], fuzzy extractors [11] and helper data systems [24], derive a
key from a biometric measurement and store an irreversibly hashed version of the key
in the biometric system. It is the purpose of all these methods to protect the privacy
of biometric information without reducing the performance of the biometric system
in terms of False Acceptance Rate (FAR) and False Rejection Rate (FRR).

In this paper we will concentrate on the third group of methods. In order to
extract a key, these methods assume that a biometric template can be represented as
a fixed length binary string. In effect, these methods define the similarity of two binary
templates in terms of Hamming distance [23]. A binary template is usually obtained
by quantizing the original biometric template using a quantizer. In order to work
properly, many quantizers produce and use side-information [24], [23], [22] that must
be stored in the biometric system. Since this side-information is user dependent, it
may leak information about the original template. Side-information with low privacy
leakage is therefore a design objective.

So far, few quantization-based template methods have been proposed. Tuyls et
al. [22] first introduced the fixed-interval quantization (FQ) with one bit per feature,
in which two intervals are separated at the mean of the background distribution.
However, they report an Equal Error Rate (EER) which is quite high (5.3%) when
compared with the EER of a likelihood ratio classifier (LC) on the same data. More-
over, the one-bit per feature quantization generates only short binary strings which
may be vulnerable to a brute force attack. Zhang et al. [9] introduced fixed interval
quantization with multi-bits per feature (ZQ), in which the quantization intervals are
determined by the mean and the standard deviation of the feature. However, the
quantization method they proposed is not optimal in terms of FAR and FRR, and
the security issue is not addressed by them.

Therefore, in this paper, we propose a user-specific, likelihood ratio based quan-
tizer (LQ) that allows to extract multiple bits from a single feature. Experiments are
carried out on both fingerprint data (FVC2000) and face data (FRGC). Results show
that our proposed quantization method achieves a reasonably good performance in
terms of FAR/FRR (when FAR is 10−4, the corresponding FRR are 16.7% and 5.77%
for FVC2000 and FRGC, respectively). In the mean time, the stored side-information
retains high security.

In Section 2.2.2, our algorithm is presented. In Section 2.2.3, experiments on
synthetic and real data are explained. In Section 2.2.4, we discuss the method while
conclusions and directions for further research are given in Section 2.2.5.

2.2.2 Multi-bits quantization

The framework that we describe is similar to the Helper Data scheme proposed in
[22]. It basically includes three parts: (1) extracting features; (2) quantization and
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coding per feature and concatenating the output codes; (3) applying error correction
coding (ECC) and hashing. However, in this paper, we propose a new approach for
the first two items.

2.2.2.1 Extracting reliable, distinctive and independent features

One important step before applying quantization is to extract reliable, distinctive
and independent features. In this paper our models assume Gaussian distributions
and equal within-class variations. Therefore, a sufficient number of samples is re-
quired to provide reliable Gaussian parameters. Additionally, we require distinctive
features, with small within-class variation and large between-class variation [41], to
reduce quantization errors. Furthermore, we require features that are independent,
with respect to both the background distributions and the genuine user distribution.
Independent features can reduce the quantization error and subsequently generate
independent bits. To extract features which meet the above requirements, we choose
the PCA/LDA processing method described in [42].

2.2.2.2 Quantization and concatenation

The user-specific quantization is applied independently to each feature dimension, and
the output codes are concatenated as the binary string. The idea of using likelihood
ratio is driven by its optimal FAR/FRR performance in many biometric applications
[43]. In a one-dimensional feature space V the likelihood ratio of user ω is defined as:

Lω =
G(v, µω , σω)

G(v, µ0, σ0)
, (2.1)

where v, µ and σ are scalars. Due to the PCA/LDA processing, we have G(v, µ0, σ0)
with (µ0 = 0;σ0 = 1) as the background probability density function (PDF) and
G(v, µω , σω) as the genuine user PDF [43].

Fig. 2.3 shows an example of constructing a one-dimensional quantizer, given both
probability density functions. By applying a threshold t ∈ [0,∞) to the likelihood
ratio Lω, a genuine quantization interval Qgenuine,ω is determined in the feature space
V, in which the genuine user ω is assigned:

Qgenuine,ω = {v ∈ V | Lω ≥ t} . (2.2)

With Qgenuine,ω, the probability Pω for an impostor to be inside the genuine
quantization interval can be calculated:

Pω =

∫

Qgenuine,ω

G(v, 0, 1)dv . (2.3)

We construct the rest of the quantization intervals such that they have the same
probability mass Pω in the background distribution. This gives an attacker no addi-
tional information on which is the genuine interval. Furthermore, it can be seen that
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Figure 2.3: An example of constructing a one-dimensional quantizer based on the likeli-
hood ratio Lω (dotted). The background PDF is G(v, 0, 1) (solid), the genuine user PDF is
G(v, µω = 0.8, σω = 0.2) (dashed), threshold t (grey). + illustrates the genuine user interval,
whilst ∗ illustrates the complete quantization intervals and the intervals are labeled with Gray
code.

this might lead to independent bits derived from a single feature. Thus we have:

Kω⋃

k=1

Qk,ω = V ,

Qk,ω

⋂
Ql,ω = ∅, k 6= l ,

Qk,ω = Qgenuine,ω, for certain k ,∫

Qk,ω

G(v, 0, 1)dv = Pω , (2.4)

whereKω is the number of quantization intervals andQk,ω is the quantization interval.
In the following part, we will see that Pω presented in (2.3) equals the FAR for a single
feature.

Given an arbitrary t, it is not always possible to let each quantization interval have
this Pω probability. Usually the left-end and the right-end interval have a probability
mass less than Pω. Therefore, we address them as one wrap-around interval. In order
to meet (2.4), only thresholds t that can generate

Pω = 1/Kω , (2.5)

are applicable in our algorithm. Based on the above procedure, a Kω-interval quan-
tizer is established (∗ in Fig. 2.3). Note that Kω might not be an exponential of 2 and
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it varies with different users. In most of the applications, we need to obtain a fixed
code length L for all the users. For this reason, the code length need to be extended
from log2 Kω to L, L = ⌈log2 Kω⌉.

Quantization intervals are labeled with a Gray code [44] which limits the Hamming
distance of two adjacent code words to a single bit (see Fig. 2.3). This reduces the
number of bit errors due to within-class variation.

Besides the binary code generated above, the quantizer information (known as
side-information Qω) has to be stored for user ω as well. Since the background PDF is
known, we only have to randomly select one quantization interval (Qk,ω | k ∈ [1,Kω])
as the side-information to be stored.

To extend the quantization to the m-dimensional case, we simply need to apply
the above method to each feature dimension. The output binary string Sω is a con-
catenation of binary codes corresponding to the genuine intervals of each dimension,
and the side-information is the collection of quantizer information for each dimension.

2.2.2.3 FAR/FRR and security

Given a threshold t, the false acceptance rate FARi,ω(t) and false rejection rate
FRRi,ω(t) of user ω with the one-dimensional feature i is given by:

FARi,ω(ti) =

∫

Qgenuine,ω

G(v, 0, 1)dv , (2.6)

FRRi,ω(ti) = 1−

∫

Qgenuine,ω

G(v, µω , σω)dv . (2.7)

Assuming that the PCA/LDA process results in independent features, the FAR
and FRR in the m-dimensional feature space Vm for user ω, with the threshold vector
T = [t1 . . . tm], is defined as:

FARω(T) =

m∏

i=1

FARi,ω(ti) , (2.8)

FRRω(T) = 1−
m∏

i=1

(1− FRRi,ω(ti)) . (2.9)

In a conventional biometric system, FAR represents the security at the real-valued
biometric representation level. In our system, since we derive a binary string as the
output representation, it is necessary to consider the security at the binary string level
as well. Thus ideally the entropy of the output string H(Sω) should be high, and the
mutual information I(Sω;Qω) between the output binary string and the published
side-information should be zero [22].

For one-dimensional feature i, given the number of quantization intervals Ki,ω,
the way to achieve a high binary string entropy and a mutual information zero is to
build the quantization according to (2.4), which means an equal probability Pω for
each quantization interval. This requires a threshold t that gives FARi,ω = 1/Ki,ω.
Under this condition, the binary string entropy Hi(Si,ω) and its relation with FARi,ω
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is given by (2.10). In our implementation, the wrap-around interval, with less than
Pω probability mass for each of the left-end and right-end interval, will never be a
genuine interval. Due to this effect, the mutual information is (2.11).

Hi(Si,ω) = log2 Ki,ω = − log2 FARi,ω , (2.10)

Ii(Si,ω ;Qi,ω) = log2 Ki,ω − log2 (Ki,ω − 1) . (2.11)

In the m-dimensional feature space Vm, the m features are independent because of
the PCA/LDA process. Hence, the binary string entropy and the mutual information
becomes:

H =

m∑

i=1

Hi , (2.12)

I =

m∑

i=1

Ii . (2.13)

2.2.2.4 Optimization

A good biometric system requires low FARω/FRRω with high H . A well-defined
method is to construct a receiver operating characteristic (ROC) curve based on
all possible m-dimensional FARω and FRRω [9]. Every point on the ROC curve
corresponds to a threshold vector T. An optimal system can be found by minimizing
the overall FRRω given the FARω constraint:

argmin
T

(FRRω(T)), given FARω(T) = α . (2.14)

The above optimization procedure needs a full range of T vectors, while in our
case, only some T vectors are acceptable according to requirement (2.5). To solve
this problem, we proposed a sub-optimal method. We will explain the detail of this
method in Section 2.2.3.

2.2.3 Experiments and results

To examine the performance of this likelihood ratio based quantization method, we
conducted experiments on both synthetic and real data sets.

2.2.3.1 Synthetic data experiments

We first carried out an experiment on the synthetic Gaussian data, with six methods:
(1) likelihood ratio classifier (LC); (2) Zhang’s multi-bits quantization (ZQ) [9]. In
this method, each feature component is quantized with multiple intervals and each
interval has the same fixed size (kσ), where σ denotes the standard deviation of
the genuine user PDF; (3) fixed one-bit quantization (FQ1) [22]. In this method,
each feature component is quantized with 2 fixed intervals which have equally 0.5
background probability mass; (4) fixed two-bits quantization (FQ2). In this method,
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Figure 2.4: One-dimensional simulation result: (a) Overall ROC with σ = 0.2; (b) Overall
ROC with σ = 0.8. ZQ (dashed); LQ and LC (solid); FQ1 (∗); FQ2 (�); FQ3 (+).

each feature component is quantized with 4 fixed intervals which have equally 0.25
background probability mass; (5) fixed three-bits quantization (FQ3). In this method,
each feature component is quantized with 8 fixed intervals which have equally 0.125
background probability mass; (6) our likelihood ratio based multi-bits quantization
(LQ).

We first performed a one-dimensional simulation on both a distinctive (σ = 0.2)
and a non-distinctive (σ = 0.8) feature example. Fig. 2.4 shows the ROC performance
of the overall user population. Our LQ method has the best FAR/FRR performance,
the same as a likelihood ratio classifier. For fixed quantization FQ1, FQ2 and FQ3,
it is not possible to tune any parameter, and their performance is worse than our LQ
method. When the user within-class variation is small (e.g. σ = 0.2) , LQ has similar
performance as ZQ, when the user within-class variation is large (e.g. σ = 0.8), LQ
outperforms ZQ.

We applied the LQ method on two-dimensional synthetic data, based on the as-
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Figure 2.5: Two-dimensional simulation result: ROC of the one-dimensional feature
σ1 = 0.2 (dotted); ROC of the one-dimensional feature σ2 = 0.8 (dashed); ROC of the
two-dimensional features σ1 = 0.2 and σ2 = 0.8 from LQ (solid); ROC of the same two-
dimensional features from LC (dash-dotted).

sumption that the user within-class variance for the first two dimensions was σ1 = 0.2
and σ2 = 0.8 respectively. The optimal ROC curve was constructed by the process de-
scribed in Section 2.2.2. Fig. 2.5 plots the two-dimensional overall ROC performance,
and it suggests that the combined ROC curve constructed from our LQ method does
not introduce a large degradation compared to the performance of LC.

2.2.3.2 Real data experiments

The real data experiments were conducted on two data sets: a fingerprint data set
FVC2000 (DB2) [35], [36] and a face data set FRGC (version 1) [38]. Both data sets
were extracted into fixed length feature vectors.

• FVC2000(DB2): This fingerprint data set contains 8 images of 110 different
users. The original feature vector length extracted from the image was 1536
[22]. Features include the squared directional field and the Gabor response.

• FRGC(ver1): This face data set contains variable images of 275 different users.
The images were taken under controlled conditions and they were aligned using
manually labeled landmarks. The original feature vector length extracted from
the image was 8762. Features are the grey value of the face images.

The experiments consist of three steps: training, enrollment and verification. Dur-
ing the initial off-line training step, PCA/LDA was applied on the training data
to reduce the feature dimension. Afterwards, an enrollment step was conducted in
which the quantizers were constructed based on the enrollment data, in particular
the means of the features after dimensionality reduction. The output reference bi-
nary string and the side-information were stored. In the verification step, verification
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Figure 2.6: Results of PCA/LDA feature extraction compared to the reliable bits selection
method on FVC2000 (black) and FRGC (grey) (feature dimension for PCA is 100 and feature
dimension for LDA is 50). Reliable bits selection method (dashed); PCA/LDA/FQ1 method
(solid).

data were quantized based on the quantizer side-information, and the output query
string was compared to the reference string for the final decision. To split the data,
75% (FVC2000) and 50% (FRGC) of the samples per user were used for both train-
ing and enrollment, and the rest 25% (FVC2000) and 50% (FRGC) of the samples
were used for verification. For both data sets, we extracted 50 features from their
original measurements. To compare the query and the reference binary strings, we
applied a Hamming distance classifier, in which the Hamming distance represents the
number of different bits between the enrollment and verification binary string. The
Hamming distance classifier replaces the ECC present in many template protection
methods (e.g. [22]). Assigning a threshold D to the distance has the same effect as
applying an ECC that can correct at most D bits. By varying the threshold D, a
ROC curve on the verification data can be constructed. To obtain a reasonable error
on the results, we repeated the above procedure with 20 random splits of enrollment
and verification data.

We conducted two types of experiments. In the first experiment, we examined
the feature extraction performance via the PCA/LDA process, followed by the FQ1
quantization. The result was compared to the reliable bits selection method proposed
in [22], in which the output binary strings are selected directly from the original
feature measurements, with a pre-selection based on the reliability of FQ1 results on
each enrollment sample and a selection based on the ratio of within-class variation
and between-class variation. Fig. 2.6 plots the log-ROC curves derived from both
PCA/LDA method and reliable bits selection method. For both FVC2000 and FRGC,
the performance increases dramatically with PCA/LDA. Such result suggests that
features extracted from PCA/LDA method are more reliable and distinctive, which
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Figure 2.7: Log-ROC curve of the fingerprint FVC2000 data.

provides a crucial precondition for the upcoming quantization step.
In the second experiment, we examined the different quantization performances.

To do a high-dimensional quantization experiment, we need to construct a ROC
curve for high-dimensional features, but the optimization method described by (2.14)
in Section 2.2.2 is not feasible and constructing an optimal ROC curve is a point
of further research. However, since a fixed length binary string as output is often
preferred, we propose an alternative sub-optimal LQn method. The core idea is to
quantize each feature dimension into n bits, which also means that the FAR per
dimension is fixed to 2−n. As a result, the output string will have a fixed length.

We performed the experiments of LQ2 (n = 2) and LQ3 (n = 3) on both data
sets, followed by the three-step procedure described above. The feature dimension
after feature extraction was set to 50. Consequently, each user ended up with 100
and 150 bit string. (Note that the above likelihood ratio based quantization is user
customized, which means each user has his own optimized quantization configuration.)
Afterwards, we compared the LQ2 and LQ3 performance with FQ1, FQ2, FQ3 and
LC methods.

Fig. 2.7 and 2.8 show the ROC plots for FVC2000 and FRGC data sets. It can
be seen that results from all the methods are consistent on both data sets. LC is
superior to all the quantization based methods. Apparently, FQ1, FQ3 and LQ3
do not provide comparable performance to LQ2 and FQ2. Compared to LQ2, FQ2
has a slightly worse performance. That means LQ2 consistently outperforms all the
quantization methods, and its performance is not significantly degraded compared
to the LC result. Table 2.1 lists the performance of LQ2 under different FAR/FRR
requirements, compared to the LC performance. For a reasonable application requir-
ing FAR = 10−4, the corresponding FRR are 16.7% (FVC2000) and 5.77% (FRGC)
respectively, which is acceptable as compared to the performance of the LC classifier.
The Hamming distance threshold needed to achieve such system performance is 29
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Figure 2.8: Log-ROC curve of the face FRGC data.

Table 2.1: The performance of LC, LQ2 under different system requirements

FAR = 10−2 FAR = 10−3 FAR = 10−4

FRR D FRR D FRR D
FVC2000-LC 3.8% N/A 8.7% N/A 16.2% N/A
FVC2000-LQ2 4.3% 37 8.7% 33 16.7% 29
FRGC-LC 0.41% N/A 1.20% N/A 2.80% N/A
FRGC-LQ2 1.03% 37 2.60% 33 5.77% 29

from 100 bits for both data sets.
Now we analyze the security of the output binary string. Under the assumption

of independent features, the output average string entropy for FQ2, LQ2, FQ3 and
LQ3 are 100, 100, 150 and 150 respectively. However, in practice these numbers will
be lower due to dependency of the individual features. The mutual information I
between the output binary string and the side-information is zero for the FQ method,
but not zero for our LQ method. For instance, the mutual information for LQ2 is
0.415 bit per feature component. This can be viewed as a sacrifice of security since
we introduced more user-specific information in the LQ quantization.

2.2.4 Discussion

The performance of the quantization methods is affected by two factors: the quality of
the features and the quantization interval size. In our case, the quality of the features
is defined as the within-class variation of each feature component after the PCA/LDA
process, and the quantization interval size is driven by the number of quantization bits
per feature dimension: quantization into 1 bit per feature (FQ1); quantization into 2
bits per feature (FQ2/LQ2) and quantization into 3 bits per feature (FQ3/LQ3). An
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investigation on the within-class variation of the feature components after PCA/LDA
process demonstrates that for both FVC2000 and FRGC data sets, the within-class
variance of the 50 features range from 0.142 to 0.602. If FQ1 is applied, which has
relatively large quantization intervals compared to the feature variation, the FRR
per feature dimension is low. However, in this case the FAR of 0.5 per dimension
is quite high. This results also in a high FAR in the high dimensional experiment
(2.8). If FQ3 and LQ3 are applied, which have relatively small quantization intervals
compared to feature variation, the FAR reduces to 0.125 per feature dimension. In
contrast, the FRR per feature dimension will be high. This results in a high FRR
in the high dimensional experiment (2.9). Therefore, FQ2 and LQ2 turn out to be a
good compromise with respect to the FAR/FRR requirements. This explains why in
Fig. 2.7 and Fig. 2.8, LQ2 and FQ2 outperforms FQ1, FQ3 and LQ3.

2.2.5 Conclusions

In this paper we discussed the problem of transforming biometric feature vectors
into binary strings which are to be used in recently introduced methods for privacy
protection of biometric information. We proposed to pre-process the feature vectors
using a PCA/LDA transformation followed by a quantizer based on a likelihood ratio
approach. Depending on the setting, our quantizer allows to extract multiple bits
from a single feature. Comparison of our approach with a number of quantizers
known from the literature, using both synthetic and real-life data, shows that the
likelihood quantizer outperforms the other quantizers. Moreover, its performance is
not significantly degraded as compared to a traditional likelihood classifier.

In our current experiments we extracted the same number of bits for every feature.
In practice, however, not all features are equally distinctive. Therefore, an adaptive
coding method, in which more bits are assigned to distinctive features and less bits
to non-distinctive features, is a point of future research.

2.3 Chapter conclusion

In this chapter, one-dimensional quantizers FQ and LQ are presented. Regarding
the research objectives, both quantizers are capable of extracting multiple i.i.d. bits.
Compared to FQ, LQ extracts more reliable bits of a prescribed length, and thus
optimizes the FAR and the FRR performances for every feature. Furthermore, with
more reliable bits extracted from every feature, the length of the random key K can
be increased.
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Detection Rate Optimized Bit Allocation

3.1 Chapter introduction

PURPOSE. In Chapter 2, we aimed to design one-dimensional quantizers, given a
prescribed fixed number of quantization bits per biometric feature. For example, the
likelihood ratio based quantizer (LQ) determines the quantization intervals, so as to
maximize the detection rate at a prescribed number of quantization bits. However,
even with optimized quantization intervals per feature, the overall recognition
performance of the entire binary strings is not yet optimal, because the features
are all quantized with an equal number of bits. Given the same total length of the
binary string, it is desirable to extract more bits from more discriminative features
and fewer bits from less discriminative features. Therefore, the purpose of this
chapter is to design such an adaptive bit allocation principle. This bit allocation
principle should be independent of the quantizers, which means it can be applied
together with any types of quantizer, e.g. one-dimensional quantizers like FQ and
LQ, or two-dimensional quantizers. Given independent features and quantizers
that can extract statistically independent and identically distributed (i.i.d.) bits,
the bit allocation principle should preserve the i.i.d. bits property. When applied
to a Hamming distance classifier (HDC), the binary strings should result in good
recognition performance.

CONTENTS. A detection rate optimized bit allocation (DROBA) principle is
presented in this chapter. Independent of the actual quantization intervals, DROBA
can be applied to both one- and two-dimensional quantization schemes. In this
chapter, it is presented in combination with the one-dimensional quantizers FQ and
LQ, as illustrated in Fig. 3.1. Given any chosen type of quantizer, for every feature

31
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of an enrolled user, the detection rates at zero Hamming distance is computed for a
range of allowed allocated bits. These detection rates can be theoretically computed
based on the modeling of the genuine user probability density function, or as an
approximated value. Given these detection rates for every feature, DROBA aims to
maximize the overall theoretical detection rate of the binary strings, subject to a
fixed total number of bits. A dynamic programming or a greedy search approach is
then applied to search for the optimal solution. As a result, DROBA assigns more
bits to more discriminative features and fewer bits to less discriminative features.
Essentially, DROBA optimizes the theoretical overall detection rate for the HDC,
when the Hamming distance threshold is zero. Figure 3.2 shows the contribution of
this chapter in the context of the thesis.
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Figure 3.1: Block diagram of the one-dimensional quantization and coding scheme, high-
lighted in DROBA design. The vi, i = 1 . . . D denote D independent biometric features, and
bi denotes the assigned number of bits to the ith feature. The quantized bits si, i = 1 . . . D
from all D features are then concatenated into the binary string s.

PUBLICATION(S). The content of Section 3.2 has been published in [45].

3.2 Biometric quantization through detection rate
optimized bit allocation

Abstract

Extracting binary strings from real-valued biometric templates is a fundamental step
in many biometric template protection systems, such as fuzzy commitment, fuzzy
extractor, secure sketch and helper data systems. Previous work has been focusing
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Figure 3.2: Block diagram of the main contributions, highlighted in Chapter 3.

on the design of optimal quantization and coding for each single feature component,
yet the binary string – concatenation of all coded feature components – is not optimal.
In this paper, we present a detection rate optimized bit allocation principle (DROBA),
which assigns more bits to discriminative features and fewer bits to non-discriminative
features. We further propose a dynamic programming approach (DP) and a greedy
search approach (GS) to achieve DROBA. Experiments of DROBA on the FVC2000
fingerprint database and the FRGC face database show good performances. As a
universal method, DROBA is applicable to arbitrary biometric modalities, such as
fingerprint texture, iris, signature and face. DROBA will bring significant benefits
not only to the template protection systems, but also systems with fast matching
requirements or constrained storage capability.

3.2.1 Introduction

The idea of extracting binary biometric strings was originally motivated by the in-
creasing concern about biometric template protection [40]: Some proposed systems,
such as fuzzy commitment [21], fuzzy extractor [11], [13], secure sketch [26] and helper
data systems [24], [22], [23], [25], employ a binary biometric representation. Thus, the
quality of the binary string is crucial to their performances. Apart from the template
protection perspective, binary biometrics also merit fast matching and compressed
storage, facilitating a variety of applications utilizing low-cost storage media. There-
fore, extracting binary biometric strings is of great significance. As shown in Fig. 3.3,
a biometric system with binary representation can be generalized into the following
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three modules.
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Figure 3.3: Three modules of a biometric system with binary representation.

Feature extraction: This module aims to extract independent, reliable and dis-
criminative features from biometric raw measurements. Classical techniques used in
this step are, among others, Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA) [42].
Bit extraction: This module aims to transform the real-valued features into a fixed-
length binary string. Biometric information is well-known for its uniqueness. Un-
fortunately, due to sensor and user behavior, it is inevitably noisy, which leads to
intra-class variations. Therefore, it is desirable to extract binary strings that are not
only discriminative, but also have low intra-class variations. In other words, both a
low false acceptance rate (FAR) and a low false rejection rate (FRR) are required.
Additionally, from the template protection perspective, the bits, generated from an
imposter, should be statistically independent and identically distributed (i.i.d.), in
order to maximize the effort of an imposter in guessing the genuine template. Pre-
sumably, the real-valued features obtained from the feature extraction step are inde-
pendent, reliable and discriminative. Therefore, a quantization and coding method
is needed to keep such properties in the binary domain. So far, a variety of such
methods have been published, of which an overview will be given in Section 3.2.2.
Binary string classification: This module aims to verify the binary strings with
a binary string based classifier. For instance, the Hamming distance classifier which
bases its decision on the number of errors between two strings. Alternatively, the
binary strings can be verified through a template protection process, e.g. fuzzy com-
mitment [21], fuzzy extractor [11], [13], secure sketch [26] and helper data systems
[24], [22], [23], [25]. Encrypting the binary strings by using a one-way function, these
template protection systems verify binary strings in the encrypted domain. Usually
the quantization methods in the bit extraction module can not completely eliminate
the intra-class variation. Thus employing a strict one-way function will result in a
high FRR. To solve this problem, error correcting techniques are integrated to further
eliminate the intra-class variation in the binary domain. Furthermore, randomness is
embedded to avoid cross-matching.

This paper deals with the bit extraction module, for which we present a detec-
tion rate optimized bit allocation principle (DROBA) that transforms a real-valued
biometric template into a fixed-length binary string. Binary strings generated by
DROBA yield a good FAR and FRR performance when evaluated with a Hamming
distance classifier.

In Section 3.2.2 an overview is given of known bit extraction methods. In Sec-
tion 3.2.3 we present the DROBA principle with two realization approaches: dynamic
programming (DP) and greedy search (GS), and their simulation results are illustrated
in Section 3.2.4. In Section 3.2.5, we give the experimental results of DROBA on the



3.2. Biometric quantization through detection rate optimized bit allocation 35

FVC2000 fingerprint database [35] and the FRGC face database [37]. In Section 3.2.6
the results are discussed and conclusions are drawn in Section 3.2.7.

3.2.2 Overview of bit extraction methods

A number of bit extraction methods, based on quantization and coding, have been
proposed in biometric applications [24], [22], [23], [8], [46], [9], [39]. In general these
methods deal with two problems: (1) how to design an optimal quantization and
coding method for a single feature, and (2) how to compose an optimal binary string
from all the features.

So far, most of the published work has been focusing on designing the optimal
quantization intervals for individual features. It is known that, due to the inter- and
intra-class variation, every single feature can be modeled by a background probability
density function (PDF) pb and a genuine user PDF pg, indicating the probability
density of the whole population and the genuine user, respectively. Given these two
PDFs, the quantization performance of a single feature i, with an arbitrary bi-bit
quantizer, is then quantified as the theoretical FAR αi:

αi(bi) =

∫

Qgenuine,i(bi)

pb,i(v)dv , (3.1)

and FRR βi, given by:

δi(bi) =

∫

Qgenuine,i(bi)

pg,i(v)dv , (3.2)

βi(bi) = 1− δi(bi) , (3.3)

where Qgenuine,i represents the genuine user interval into which the genuine user is
expected to fall, and δi represents the corresponding detection rate. An illustration of
these expressions is given in Fig. 3.4. Hence, designing quantizers for a single feature
is to optimize its FAR (3.1) and FRR (3.3).

Linnartz et al. proposed a method inspired by Quantization Index Modulation
[24]. As depicted in Fig. 3.5(a), the domain of the feature v is split into fixed intervals
of width q. Every interval is alternately labeled using a ‘0’ or a ‘1’. Given a random
bit string s, a single bit of s is embedded per feature by generating an offset for v
so that v ends up in the closest interval that has the same label as the bit to be
embedded.

Vielhauer et al. [8] introduced a user-specific quantizer. As depicted in Fig. 3.5(b),
the genuine interval [Imin(1− t), Imax(1+ t)] is determined according to the minimum
Imin and maximum Imax value of the samples from the genuine user, together with a
tolerance parameter t. The remaining intervals are constructed with the same width
as the genuine interval.

Hao and Wah [46] and Chang et al. [9] employed a user-specific quantizer as
shown in Fig. 3.5(c). The genuine interval is [µ− kσ, µ+ kσ], where µ and σ are the
mean and the standard deviation of the genuine user PDF, and k is an optimization
parameter. The remaining intervals are constructed with the same width 2kσ.



36 Chapter 3. Detection Rate Optimized Bit Allocation

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Feature space V

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

1000 01 11

Figure 3.4: An illustration of the FAR (black) and the FRR (gray), given the background
PDF (solid), the genuine user PDF (dot), and the quantization intervals (dash), where the
genuine user interval is marked as ∗.

The quantizers in [24], [8], [46] and [9] have equal-width-intervals. However, con-
sidering a template protection application, this leads to potential threats, because
samples tend to have higher probabilities in some quantization intervals and thus an
imposter can search the genuine interval by guessing the one with the highest probabil-
ity. Therefore, quantizers with equal-probability-intervals or equal-frequency-intervals
[22], [39] have been proposed.

Tuyls et al. [22] and Teoh et al. [15] employed a 1-bit fixed quantizer as shown in
Fig. 3.5(d). Independent of the genuine user PDF, this quantizer splits the domain
of the feature v into two fixed intervals using the mean of the background PDF as the
quantization boundary. As a result, both intervals contain 0.5 background probability
mass. The interval that the genuine user is expected to fall into is referred to as the
genuine interval.

Chen et al. [39] extended the 1-bit fixed quantizer into multi-bits. A b-bit fixed
quantizer contains 2b intervals, symmetrically constructed around the mean of the
background PDF, with equally 2−b background probability mass. Fig. 3.5(e) il-
lustrates an example of b = 2. In the same paper [39], a user-specific likelihood
ratio based multi-bits quantizer was introduced, as shown in Fig. 3.5(f). For a b-
bit quantizer, a likelihood ratio threshold first determines a genuine interval with
2−b background probability mass. The remaining intervals are then constructed with
equal 2−b background probability mass. The left- and right-tail are combined as
one wrap-around interval, excluding its possibility as a genuine interval. The likeli-
hood ratio based quantizer provides the optimal FAR and FRR performances in the
Neyman-Pearson sense.
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Figure 3.5: Illustration of the quantizers for a single feature i, and the corresponding Gray
codes. The background PDF pb(v, 0, 1) (solid); the genuine user PDF pg(v, µ, σ) (dot); the
quantization intervals (dash). (a) QIM quantization; (b) Vielhauer’s quantizer; (c) Chang’s
multi-bits quantizer; (d) Fixed one-bit quantizer; (e) Fixed two-bits quantizer; (f) Likelihood
ratio based quantizer, the likelihood ratio (dash-dot), threshold (gray).
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The equal-probability-intervals in both the fixed quantizer and the likelihood ratio
based quantizer ensure independent and identically distributed bits for the imposters,
which meets the requirement of template protection systems. For this reason, we
take these two quantizers into considerations in the following sections. Additionally,
because of the equal-probability-intervals, the FAR of both quantizers for feature i
becomes:

αi(bi) = 2−bi . (3.4)

With regard to composing the optimal binary string from D features, the perfor-
mance of the entire binary string can be quantified by the theoretical overall FAR α
and detection rate δ:

α(b1, . . . , bD) =

D∏

i=1

αi(bi) , (3.5)

δ(b1, . . . , bD) =

D∏

i=1

δi(bi) ,

D∑

i=1

bi = L . (3.6)

Given (3.4), the overall FAR in (3.5) shows a fixed relationship with L:

α(b1, . . . , bD) = 2−L . (3.7)

Hence composing the optimal binary string is to optimize the detection rate at a
given FAR value. In [22], [23] and [39], a fixed bit allocation principle (FBA) – with a
fixed number of bits assigned to each feature – was proposed. Obviously, the overall
detection rate of the FBA is not optimal, since we would expect to assign more bits
to discriminative features and fewer bits to non-discriminative features. Therefore, in
the next section, we propose the DROBA principle, which gives the optimal overall
detection rate.

3.2.3 Detection rate optimized bit allocation (DROBA)

In this section, we first give the description of the DROBA principle. Furthermore,
we introduce both a dynamic programming and a greedy search approach to search
for the solution.

3.2.3.1 Problem Formulation

Let D denote the number of features to be quantized; L, the specified binary string
length; bi ∈ {0, . . . , bmax}, i = 1, . . . , D, the number of bits assigned to feature i; and
δi(bi), the detection rate of feature i, respectively. Assuming that all the D features
are independent, our goal is to find a bit assignment {b∗i } that maximizes the overall
detection rate in (3.6):

{b∗i } = arg max∑
D
i=1

bi=L
δ(b1, . . . , bD) (3.8)

= arg max∑
D
i=1

bi=L

D∏

i=1

δi(bi) .
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Note that by maximizing the overall detection rate, we in fact maximize the probabil-
ity of all the features simultaneously staying in the genuine intervals, more precisely,
the probability of a zero bit error for the genuine user. Furthermore, considering using
a binary string classifier, essentially the overall FAR α in (3.5) and the overall detec-
tion rate δ in (3.6) correspond to the point with the minimum FAR and minimum
detection rate on its theoretical receiver operating characteristic curve (ROC), as il-
lustrated in Fig. 3.6. We know that α is fixed in (3.7), by maximizing δ, DROBA in
fact provides a theoretical maximum lower bound for the ROC curve. Since DROBA
only maximizes the point with minimum detection rate, the rest of the ROC curve,
which relies on the specific binary string classifier, is not yet optimized. However, we
would expect that with the maximum lower bound, the overall ROC performance of
any binary string classifier is to some extent optimized.

The optimization problem in (3.8) can be solved by a brute force search of all
possible bit assignments {bi} mapping D features into L bits. However, the computa-
tional complexity is extremely high. Therefore, we propose a dynamic programming
approach with reasonable computational complexity. To further reduce the compu-
tational complexity, we also propose a greedy search approach, for which the optimal
solution is achieved under additional requirements to the quantizer.
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Figure 3.6: Illustration of the maximum lower bound for the theoretical ROC curve provided
by DROBA.

3.2.3.2 Dynamic Programming Approach (DP)

The procedure to search for the optimal solution for a genuine user is recursive. That
is, given the optimal overall detection rates δ(j−1)(l) for j−1 features at string length
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l, l = 0, . . . , (j − 1)× bmax:

δ(j−1)(l) = max∑
bi=l, bi∈{0,...,bmax}

j−1∏

i=1

δi(bi) , (3.9)

the optimal detection rates δ(j)(l) for j features are computed as:

δ(j)(l) = max
b′ + b′′ = l,
b′ ∈ {0, . . . , (j − 1) × bmax},
b′′ ∈ {0, . . . , bmax}

δ(j−1)(b′)δj(b
′′) , (3.10)

for l = 0, . . . , j × bmax. Note that δ(j)(l) needs to be computed for all string lengths
l ∈ {0, . . . , j × bmax}. Eq. (3.10) tells that the optimal detection rate for j features
at string length l is derived from maximizing the product of an optimized detection
rate for j − 1 features at string length b′ and the detection rate of the jth feature
quantized to b′′ bits, while b′ + b′′ = l. In each iteration step, for each value of l
in δ(j)(l), the specific optimal bit assignments of features must be maintained. Let
{bi(l)}, i = 1, . . . , j denote the optimal bit assignments for j features at binary string
length l such that the ith entry corresponds to the ith feature. Note that the sum
of all entries in {bi(l)} equals l, i.e.

∑j
i=1 bi(l) = l. If b̂′ and b̂′′ denote the values

of b′ and b′′ that correspond to the maximum value δ(j)(l) in (3.10), the optimal
assignments are updated by:

bi(l) = bi(b̂
′), i = 1, . . . , j − 1 , (3.11)

bj(l) = b̂′′ . (3.12)

The iteration procedure is initialized with j = 0, b0(0) = 0, and δ(0)(0) = 1 and
terminated when j = D. AfterD iterations, we obtain a set of optimal bit assignments
for every possible bit length l = 0, . . . , D × bmax, we only need to pick the one that
corresponds to L: The final solution {b∗i } = {bi(L)}, i = 1, . . . , D. This iteration
procedure can be formalized into a dynamic programming approach [47], as described
in Algorithm 1.

Essentially, given L and arbitrary δi(bi), the dynamic programming approach op-
timizes (3.8). The proof of its optimality is presented in Appendix A. This approach
is independent of the specific type of the quantizer, which determines the behavior of
δi(bi). The user-specific optimal solution {b∗i } is feasible as long as 0 ≤ L ≤ (D×bmax).
The number of operations per iteration step is about O((j − 1)× b2max), leading to a
total number of operations of O(D2 × b2max), which is significantly less than that of
a brute force search. However, this approach becomes inefficient if L ≪ D × bmax,
because a D-fold iteration is always needed, regardless of L.

3.2.3.3 Greedy Search Approach (GS)

To further reduce the computational complexity, we introduce a greedy search ap-
proach. By taking the logarithm of the detection rate, the optimization problem in



3.2. Biometric quantization through detection rate optimized bit allocation 41

Algorithm 1 Dynamic programming approach for DROBA

Input:

D ,L , δi(bi), bi ∈ {0, . . . , bmax}, i = 1, . . . , D ,

Initialize:
j = 0 ,

b0(0) = 0 ,

δ(0)(0) = 1 ,

while j < D do

j = j + 1 ,

b̂′, b̂′′ = argmax δ(j−1)(b′)δj(b
′′) ,

b′ + b′′ = l,
b′ ∈ {0, . . . , (j − 1) × bmax},
b′′ ∈ {0, . . . , bmax},

δ(j)(l) = δ(j−1)(b̂′)δj(b̂
′′) ,

bi(l) = bi(b̂
′), i = 1, . . . , j − 1 ,

bj(l) = b̂′′ ,

for l = 0, . . . , j × bmax ,

end while
Output:

{b∗i } = {bi(L)}, i = 1, . . . , D .
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(3.8) is now equivalent to finding a bit assignment {b∗i }, i = 1, . . . , D that maximize:

D∑

i=1

log(δi(bi)) , (3.13)

under the constraint of a total number of L bits. In [48], an equivalent problem of
minimizing quantizer distortion, given an upper bound to the bit rate, is solved by
first rewriting it as an unconstrained Lagrange minimization problem. Thus in our
case we define the unconstrained Lagrange maximization problem as:

max
bi,λ≥0

[ D∑

i=1

log(δi(bi))− λ

D∑

i=1

bi

]
. (3.14)

We know that the detection rate of a feature is monotonically non-increasing
with the number of quantization bits. Therefore, we can construct an L-bit binary
string, by iteratively assigning an extra bit to the feature that gives the minimum
detection rate loss, as seen in Algorithm 2. Suppose {bi(l)}, i = 1, . . . , D, gives the
bit assignments of all D features at binary string length l, we compute ∆i(l) for each
feature, representing the loss of the log detection rate by assigning one more bit to
that feature:

∆i(l) = log(δi(bi(l)))− log(δi(bi(l) + 1)), i = 1, . . . , D . (3.15)

Hence the extra bit that we select to construct the (l + 1)-bit binary string comes
from the feature imax that gives the minimum detection rate loss, and no extra bit
are assigned to the unchosen feature components:

imax = argmin
i

∆i(l) , (3.16)

bi(l + 1) =

{
bi(l) + 1, i = imax ,
bi(l), otherwise .

(3.17)

The iteration is initialized with l = 0, bi(0) = 0, log(δi(bi(0))) = 0, i = 1, . . . , D and
terminated when l = L. The final solution is {b∗i } = {bi(L)}, i = 1, . . . , D.

To ensure the optimal solution of this greedy search approach, the quantizer has
to satisfy the following two conditions:

1. log(δi) is a monotonically non-increasing function of bi.

2. log(δi) is a concave function of bi.

The number of operations of the greedy search is about O(L×D), which is related
with L. Compared with the dynamic programming approach with O(D2 × b2max),
greedy search becomes significantly more efficient if L ≪ D × b2max, because only an
L-fold iteration needs to be conducted.

The DROBA principle provides the bit assignment {b∗i }, indicating the number of
quantization bits for every single feature. The final binary string for a genuine user
is the concatenation of the quantization and coding output under {b∗i }.
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Algorithm 2 Greedy search approach for DROBA

Input:

D ,L , log(δi(bi)), bi ∈ {0, . . . , bmax}, i = 1, . . . , D ,

Initialize:
l = 0 ,

bi(0) = 0 ,

log(δi(bi(0))) = 0 ,

while l < L do

∆i(l) = log(δi(bi(l)))− log(δi(bi(l) + 1)) ,

imax = argmin
i

∆i(l) ,

bi(l + 1) =

{
bi(l) + 1, i = imax ,
bi(l), otherwise ,

l = l + 1 , i = 1, . . . , D ,

end while
Output:

{b∗i } = {bi(L)}, i = 1, . . . , D .
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3.2.4 Simulations

We investigated the DROBA principle on five randomly generated synthetic features.
The background PDF of each feature was modeled as a Gaussian density pb,i(v) =
N(v, 0, 1), with zero mean and unit standard deviation. Similarly, the genuine user
PDF was modeled as Gaussian density pg,i(v) = N(v, µi, σi), σi < 1, i = 1, . . . , 5, as
listed in Table 3.1. For every feature, a list of detection rates δi(bi), bi ∈ {0, . . . , bmax}
with bmax = 3, was computed from (3.2). Using these detection rates as input, the
bit assignment was generated according to DROBA. Depending on the quantizer type
and the bit allocation approach, the simulations were arranged as follows:

• FQ-DROBA(DP): fixed quantizer combined with DROBA, by using the dy-
namic programming approach;

• FQ-DROBA(GS): fixed quantizer combined with DROBA, by using the greedy
search approach;

• LQ-DROBA(DP): likelihood ratio based quantizer combined with DROBA, by
using the dynamic programming approach;

• LQ-DROBA(GS): likelihood ratio based quantizer combined with DROBA, by
using the greedy search approach;

• FQ-FBA(b): fixed quantizer combined with the fixed b-bit allocation principle
[39];

• LQ-FBA(b): likelihood ratio based quantizer combined with the fixed b-bit al-
location principle.

Table 3.1: The randomly generated genuine user PDF N(v, µi, σi), i = 1, . . . , 5.

i 1 2 3 4 5
µi −0.12 −0.07 0.49 −0.60 −0.15
σi 0.08 0.24 0.12 0.19 0.24

We computed the overall detection rate (3.6), based on the bit assignment corre-
sponding to various specified string length L. The logarithm of the overall detection
rate are in illustrated in Fig. 3.7. Results show that DROBA principle generates
higher quality strings than the FBA principle. Moreover, DROBA has the advan-
tage that an arbitrary length binary string can always be generated. Regarding the
greedy search approach, we observe that the likelihood ratio based quantizer seems
to satisfy the monotonicity and concaveness requirements, which explains the same
optimal detection rate performance of LQ-DROBA(DP) and LQ-DROBA(GS). How-
ever, in the case of the fixed quantizer, some features in Table 3.1 do not satisfy the
concaveness requirement for an optimal solution of GS. This explains the better per-
formance of FQ-DROBA(DP) than FQ-DROBA(GS). Note that the performance of
LQ-DROBA(DP) consistently outperforms FQ-DROBA(DP). This is because of the
better performance of the likelihood ratio based quantizer.
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Figure 3.7: The log(δ) computed from the bit assignment, through model FQ-DROBA(DP),
FQ-DROBA(GS), LQ-DROBA(DP), LQ-DROBA(GS), FQ-FBA(b), LQ-FBA(b), b =
1, 2, 3, on 5 synthetic features, at L,L = 1, . . . , 15.

Table 3.2 gives the bit assignment {b∗i } of FQ-DROBA(DP) and FQ-DROBA(GS),
at L = 1, . . . , 15. The result shows that the DROBA principle assigns more bits to
discriminative features than the non-discriminative features. We observe that the
dynamic programming approach sometimes shows a jump of assigned bits (e.g. from
L = 7 to L = 8 of feature 5, with δ = 0.34 at L = 8), whereas the bits assigned
through the greedy search approach have to increase one step at a time (with δ = 0.28
at L = 8). Such inflexibility proves that the greedy search approach does not provide
the optimal solution in this example.

3.2.5 Experiments

We tested the DROBA principle on three data sets, derived from the FVC2000(DB2)
fingerprint database [35] and the FRGC(version 1) [37] face database.

• FVC2000: This is the FVC2000(DB2) fingerprint data set, containing 8 images
of 110 users. Images are aligned according to a standard core point position,
in order to avoid a one-to-one alignment. The raw measurements contain two
categories: the squared directional field in both x and y directions, and the
Gabor response in 4 orientations (0, π/4, π/2, 3π/4). Determined by a regular
grid of 16 by 16 points with spacing of 8 pixels, measurements are taken at 256
positions, leading to a total of 1536 elements [22].

• FRGCt: This is the total FRGC(version 1) face data set, containing 275 users
with various numbers of images, taken under both controlled and uncontrolled
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Table 3.2: The bit assignment {b∗i } of FQ-DROBA(DP) and FQ-DROBA(GS) at binary
string length L, L = 1, . . . , 15.

L {b∗i } of FQ-DROBA(DP) {b∗i } of FQ-DROBA(GS)
0 [0 0 0 0 0] [0 0 0 0 0]
1 [0 0 1 0 0] [0 0 1 0 0]
2 [0 0 1 1 0] [0 0 1 1 0]
3 [2 0 1 0 0] [1 0 1 1 0]
4 [2 0 1 1 0] [2 0 1 1 0]
5 [3 0 1 1 0] [2 0 2 1 0]
6 [3 0 2 1 0] [3 0 2 1 0]
7 [3 0 3 1 0] [3 0 3 1 0]
8 [3 0 2 1 2] [3 0 3 1 1]
9 [3 0 3 1 2] [3 0 3 1 2]
10 [3 0 3 1 3] [3 0 3 2 2]
11 [3 2 3 1 2] [3 0 3 3 2]
12 [3 3 3 1 2] [3 1 3 3 2]
13 [3 2 3 3 2] [3 2 3 3 2]
14 [3 3 3 3 2] [3 2 3 3 3]
15 [3 3 3 3 3] [3 3 3 3 3]

conditions. A set of standard landmarks, i.e. eyes, nose and mouth, are used to
align the faces, in order to avoid a one-to-one alignment. The raw measurements
are the gray pixel values, leading to a total of 8762 elements.

• FRGCs: This is a subset of FRGCt, containing 198 users with at least 2 images
per user. The images are taken under uncontrolled conditions.

Our experiments involved three steps: training, enrollment and verification. In
the training step, we extracted D independent features, via a combined PCA/LDA
method [42] from a training set. The obtained transformation was then applied to
both the enrollment and verification sets. In the enrollment step, for every target user,
the DROBA principle was applied, resulting in a bit assignment {b∗i }, with which the
features were quantized and coded with a Gray code. The advantage of the Gray code
is that the Hamming distance between two adjacent quantization intervals is limited
to one, which results in a better performance of a Hamming distance classifier. The
concatenation of the codes from D features formed the L-bit target binary string,
which was stored for each target user together with {b∗i }. In the verification step,
the features of the query user were quantized and coded according to the {b∗i } of the
claimed identity, and this resulted in a query binary string. Finally the verification
performance was evaluated by a Hamming distance classifier. A genuine Hamming
distance was computed if the target and the query string originate from the same
identity, otherwise an imposter Hamming distance was computed. The detection
error trade-off (DET) curve or the equal error rate (EER) was then constructed from
these distances.
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The users selected for training are different from those in the enrollment and
verification. We repeated our experiment with a number of random partitionings.
With, in total, n samples per user (n = 8 for FVC2000, n ranges from 6 to 48 for
FRGCt, and n ranges from 4 to 16 for FRGCs), the division of the data is indicated
in Table 3.3.

Table 3.3: Training, enrollment and verification data, number of users×number of samples
per user(n), and the number of partitionings for FVC2000, FRGCt and FRGCs.

Training Enrollment Verification Partitionings
FVC2000 80× n 30× 3n/4 30× n/4 20
FRGCt 210× n 65× 2n/3 65× n/3 5
FRGCs 150× n 48× 2n/3 48× n/3 5

In our experiment, the detection rate was computed from the fixed quantizer
(FQ) [22], [39]. According to the Central Limit Theorem, we assume that after the
PCA/LDA transformation, with sufficient samples from the entire populations, the
background PDF of every feature can be modeled as a Gaussian density pb,i(v) =
N(v, 0, 1). Hence the quantization intervals are determined as illustrated in Fig. 3.8.
Furthermore, in DROBA, the detection rate plays a crucial role. Equation (3.2) shows
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Figure 3.8: Illustration of the fixed quantizer with equal background probability mass in each
interval: background PDF pb,i(v) = N(v, 0, 1) (dashed); quantization intervals (solid). (a)
bi = 0; (b) bi = 1; (c) bi = 2; (b) bi = 3.
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that the accuracy of the detection rate is determined by the underlying genuine user
PDF. Therefore, we applied the following four models:

• Model 1: We model the genuine user PDF as a Gaussian density pg,i(v) =
N(v, µi, σi), i = 1, . . . , D. Besides, the user has sufficient enrollment samples,
so that both the mean µi and the standard deviation σi are estimated from the
enrollment samples. The detection rate is then calculated based on this PDF;

• Model 2: We model the genuine user PDF as a Gaussian density pg,i(v) =
N(v, µi, σi), i = 1, . . . , D, but there are not sufficient user-specific enrollment
samples. Therefore, for each feature, we assume that the entire populations
share the same standard deviation and thus the σi is computed from the entire
populations in the training set. The µi, however, is still estimated from the
enrollment samples. The detection rate is then calculated based on this PDF;

• Model 3: In this model we do not determine a specific genuine user PDF.
Instead, we compute a heuristic detection rate δi, based on the µi, estimated
from the enrollment samples. The δi is defined as:

δi(bi) =

{
1 , dL,i(bi)× dH,i(bi) > 1 ,
dL,i(bi)× dH,i(bi) , otherwise ,

(3.18)

where dL,i(bi) and dH,i(bi) stand for the Euclidean distance of µi to the lower
and the higher genuine user interval boundaries, when quantized into bi bits;

• Model 4: In this model the global detection rates are empirically computed
from the entire populations in the training set. For every user, we compute the
mean of feature i and evaluate this feature with the samples from the same user,
at various quantization bits bi = 0, . . . , bmax. At each bi, the number of exact
matches ni,m(bi) as well as the total number of matches ni,t(bi) are recorded.
The detection rate of feature i with bi bits quantization is then the ratio of
ni,m(bi) and ni,t(bi) averaged over all users:

δ̂i(bi) =

∑
all users ni,m(bi)∑
all users ni,t(bi)

. (3.19)

We then repeat this process for all the features i = 1, , . . . , D. The detection
rates δ̂i(bi) are then used as input of DROBA. As a result, all the users share
the same bit assignment.

Following the four models, experiments with DROBA were carried out and compared
to the real-value based Mahalanobis distance classifier (MC), likelihood ratio classifier
(LC), and the fixed bit allocation principle (FBA). Thus, in short, the experiments
are described as:

• DROBA+Model 1/2/3/4: Generate the binary strings based on the fixed quan-
tizer and the DROBA principle via the dynamic programming approach, where
the detection rates are derived from Model 1, 2, 3 or 4, respectively. The bi-
nary strings are then compared with a Hamming distance classifier. Notation
DROBA here refers to FQ-DROBA(DP) in Section 3.2.4.
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• FBA: Generate the binary strings based on the fixed quantizer and the fixed
bit allocation principle [22], [23], [39], which assigns the same number of bits to
all features. The binary strings are then compared with a Hamming distance
classifier. Notation FBA here refers to FQ-FBA(b) in Section 3.2.4.

• MC+Model 1/2: Employ a Mahalanobis (norm2) distance classifier [49] on the
real-valued features, where the genuine user PDF is derived from Model 1 or 2,
respectively;

• LC+Model 1/2: Employ a likelihood ratio classifier [43] on the real-valued fea-
tures, where the genuine user PDF is derived from Model 1 or 2, respectively.

In the experiments the maximum number of quantization bits for each feature was
fixed to bmax = 3. This allows us to investigate the impact of the D−L configuration
on the DROBA performances. We conducted two experiments: In Experiment I,
given D features, we evaluated the verification performances at various binary string
lengths L; In Experiment II, given a budget of L bits, we investigated the verification
performances with various numbers of features D. Additionally, since experimental
results of DP and GS approaches are almost the same, we only present the result of
DP.

In Experiment I, Fig. 3.9(a) (c) (e) and Table 3.4 show the corresponding EER per-
formances for FVC2000, FRGCt and FRGCs, given D = 50 features after PCA/LDA
transformation. All DROBA+Model 1/2/3/4 show similar behavior: As L increases,
the performance first improves, and then starts to degrade. This could be explained
by (3.6) and (3.7) that given D, a low L ends up in a high FAR bound, contrarily a
high L ends up in a low detection rate bound. Therefore, a moderate L might provide
a good trade-off between FAR and FRR. For FVC2000 and FRGCs, DROBA+Model
1 and DROBA+Model 2 reveal similar performances, whereas DROBA+Model 3 has
slightly worse performance. In the case of FRGCt, DROBA+Model 1 constantly
outperforms DROBA+Model 2/3. As a global implementation, DROBA+Model 4
performs worse than DROBA+Model 1/2 for all three data sets, but the difference
decreases as L increases. When compared to DROBA+Model 3, despite a rather poor
performance at small L, DROBA+Model 4 gives comparable performances at large
L. To summarize, given D features, by applying DROBA, there exists a L that gives
the optimal FAR/FRR performances of a Hamming distance classifier. The optimal
L depends on the Model 1/2/3/4. Furthermore, we observe that at a low bit budget,
user-specific models (Model 1/2/3) have advantages over global models (Model 4).
Unfortunately, when the bit budget becomes too high, all models become poor. Fig.
3.9(b), (d) and (f) plot the DET curves of their best performances.

Comparing the performances of DROBA to FBA in Fig. 3.9(a) (c) (e), we observe
that both DROBA+Model 1/2 outperform FBA for all three data sets. As an example
of the FRR/FAR for FRGCt in Fig. 3.10, an explanation might be that DROBA
maximizes the detection rate bound of the Hamming distance classifier, leading to
averagely lower FRR than FBA. At a low L, DROBA+Model 3 outperforms FBA.
However, at high L, it might lose its superiority, as seen in Fig. 3.9(a) (c). This
implies that at a high L, the approximate detection rates – computed only from
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Figure 3.9: Exp. I: the EER performances of the binary strings generated under DROBA
and FBA principles, compared with the real-value feature based Mahalanobis distance classi-
fier (MC) and likelihood-ratio classifier (LC), at D = 50, for (a) FVC2000, (c) FRGCt and
(e) FRGCs, with the DET of their best performances in (b), (d), and (f), respectively.
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Table 3.4: Exp. I: the EER performances of DROBA+Model 1/2/3/4, FBA, MC+Model
1/2 and LC+Model 1/2, at D = 50, for (a) FVC2000, (b) FRGCt and (c) FRGCs.

FVC2000 D=50 EER = (%)
L=30 50 80 100 120

DROBA+Model 1 4.0 3.6 4.3 4.6 5.1
DROBA+Model 2 3.4 3.2 4.4 4.9 5.7
DROBA+Model 3 3.7 3.8 4.6 5.4 6.2
DROBA+Model 4 7.0 5.4 4.8 5.5 5.7
FBA – 5.5 – 5.4 –
MC+Model 1 8.0
MC+Model 2 5.2
LC+Model 1 7.4
LC+Mode 2 4.2

(a)

FRGCt D=50 EER = (%)
L=20 50 80 100 120

DROBA+Model 1 3.6 3.6 3.8 4.2 4.9
DROBA+Model 2 3.9 3.8 4.2 4.6 5.2
DROBA+Model 3 4.7 3.9 4.7 4.9 5.6
DROBA+Model 4 8.1 4.3 4.2 4.7 5.7
FBA – 5.0 – 4.7 –
MC+Model 1 5.5
MC+Model 2 4.2
LC+Model 1 4.6
LC+Model 2 2.2

(b)

FRGCs D=50 EER = (%)
L=20 50 80 100 120

DROBA+Model 1 3.4 3.0 3.1 3.3 4.2
DROBA+Model 2 3.0 2.7 2.7 3.3 4.5
DROBA+Model 3 3.0 2.7 3.6 4.0 4.7
DROBA+Model 4 7.8 4.4 3.9 4.2 4.7
FBA – 4.4 – 4.8 –
MC+Model 1 10.3
MC+Model 2 5.0
LC+Model 1 9.5
LC+Model 2 3.9

(c)
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the mean – no longer provide enough useful information for the DROBA principle.
We could imagine that at high L, the bit assignment of DROBA+Model 3 tends to
become ‘random’, so that it is even not competitive to FBA, which has a uniform
bit assignment. DROBA+Model 4, however, does not show great advantages over
FBA. Since both DROBA+Model 4 and FBA obtain global bit assignment, we could
analyze it for every feature. In Fig. 3.11 we plot their bit assignment at D = 50,
L = 50 and 100, for FRGCt. After PCA/LDA transformation, the features with lower
index are generally more discriminative than those with higher index. We observe that
DROBA+Model 4 consistently assigns more bits to more discriminative features than
less discriminative ones. Contrarily, FBA assigns equal bits to every feature. This
explains the better performances of DROBA+Model 4.
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Figure 3.10: The FAR and FRR performances of FBA and DROBA+Model 1/2, at D = 50,
L = 50.

Comparing the performances of DROBA to MC and LC in Fig. 3.9(a) (c) (e), we
observe that at some lengths L, DROBA+Model 1/2/3 outperform MC+Model 1/2
and LC+Model 1/2, except for LC+Model 2 in FRGCt. Likewise, DROBA+Model 4
obtains better performances than MC+Model 1/2 and LC+Model 1 at some lengths
L, but worse performances than LC+Model 2, for all three data sets.

In Experiment II, we investigated the verification performance with various num-
bers of features D, given a bit budget L = 50. Fig. 3.12(a) (c) (e) and Table 3.5
show the corresponding EER performances for FVC2000, FRGCt and FRGCs. We
can imagine that more features give DROBA more freedom to choose the optimal
bit assignment, which theoretically should give equal or better detection rate bound
at a given string length L. On the other hand, we know that the PCA/LDA trans-
formation yields less reliable feature components, as the dimensionality D increases.
This means that at a high D, if the detection rate model we apply is not robust
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Table 3.5: Exp. II: the EER performances of DROBA+Model 1/2/3/4, FBA, MC+Model
1/2 and LC+Model 1/2, at L = 50, for (a) FVC2000, (b) FRGCt and (c) FRGCs.

FVC2000 L=50 EER=(%)
D=20 30 40 50 60 79

MC+Model 1 7.2 7.3 7.3 8.0 8.2 8.7
MC+Model 2 5.4 5.4 5.3 5.2 5.2 5.4
LC+Model 1 7.3 6.9 7.1 7.4 7.5 7.9
LC+Model 2 4.8 4.6 4.7 4.3 4.3 3.8
DROBA+Model 1 8.4 5.2 4.5 3.6 3.5 2.9
DROBA+Model 2 8.3 5.4 4.0 3.2 3.1 2.7
DROBA+Model 3 8.5 6.2 4.7 3.8 3.4 2.8
DROBA+Model 4 8.2 6.5 5.5 5.4 5.4 5.4

(a)

FRGCt L=50 EER=(%)
D=20 50 80 100 120

MC+Model 1 4.9 5.5 6.9 8.1 9.0
MC+Model 2 3.8 4.2 5.7 6.2 6.9
LC+Model 1 4.5 4.6 5.3 5.8 6.3
LC+Model 2 2.7 2.2 2.2 2.2 2.2
DROBA+Model 1 7.0 3.6 3.0 3.0 3.0
DROBA+Model 2 7.2 3.8 3.8 3.7 3.6
DROBA+Model 3 7.7 4.0 3.8 3.9 4.2
DROBA+Model 4 7.3 4.3 4.3 4.3 4.3

(b)

FRGCs L=50 EER=(%)
D=20 50 80 100 120

MC+Model 1 8.1 10.3 12.1 13.9 14.8
MC+Model 2 4.3 5.0 6.1 6.6 7.2
LC+Model 1 7.7 9.5 11.4 12.6 13.0
LC+Model 2 3.9 3.9 3.9 3.9 3.7
DROBA+Model 1 6.5 3.0 3.0 2.7 2.4
DROBA+Model 2 6.7 2.7 2.5 2.2 2.1
DROBA+Model 3 7.5 2.7 2.7 2.6 2.8
DROBA+Model 4 6.7 4.4 4.4 4.4 4.4

(c)
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Figure 3.11: The bit assignment of FBA and DROBA+Model 4, at D = 50, L = 50 and
100, for FRGCt.

enough against the feature unreliability, the computed detection rate might not be
accurate and consequently mislead the DROBA. Results show that the performances
of DROBA+Model 1/2 on the three data sets consistently improve as D increases.
This suggests that given a larger number of less reliable features, DROBA+Model
1/2 are still quite effective. Unlike DROBA+Model 1/2, DROBA+Model 3 starts
to degrade at very high D, for FRGCt and FRGCs. This suggests that Model 3 is
more susceptible to unreliable features. Since it only uses feature mean to predict the
detection rate, when the dimensionality is high, the feature mean becomes unreliable,
Model 3 no longer computes accurate detection rate. As a global implementation,
DROBA+Model 4 gives relatively worse performances than DROBA+Model 1/2/3.
However, we observe that when D is larger than a certain value (50 for FVC2000,
50 for FRGCt, and 20 for FRGCt), the bit assignment of DROBA+Model 4 does
not change at all, leading to exactly the same performance. This result is consistent
with the PCA/LDA transformation, proving that globally the features are becoming
less discriminative as D increases, so that DROBA simply discards all the upcoming
features. Therefore, by sacrificing the user specificity, DROBA+Model 4 is immune
to unreliable features. Fig. 3.12(b), (d) and (f) plot the DET curves of their best
performances.

Comparing the performances of DROBA to MC and LC in Fig. 3.12(a) (c) (e),
we observe that for all three data sets, DROBA+Model 1/2/3 easily outperform
MC+Model 1/2 and LC+Model 1 as D increases. Similar results are obtained when
comparing DROBA+Model 1/2/3 to LC+Model 2 in the context of FVC2000 and
FRGCs, whereas for FRGCt, DROBA+Model 1/2/3 do not outperform LC+Model
2. Additionally, DROBA+Model 4 outperforms MC+Model 1 and LC+Model 1, as
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Figure 3.12: Exp. II: the EER performances of the binary strings generated under DROBA
and FBA principles, compared with the real-value feature based Mahalanobis distance classi-
fier (MC) and likelihood-ratio classifier (LC), at L = 50, for (a) FVC2000, (c) FRGCt and
(e) FRGCs, with the DET of their best performances in (b), (d) and (f), respectively.
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well as MC+Model 2, except for FVC2000. Unfortunately, for all three data sets,
DROBA+Model 4 does not outperform LC+Model 2.

3.2.6 Discussion

Since DROBA decides the bit assignment according to the detection rate, determin-
ing the underlying genuine user PDF is crucial. However, in practice, it turns out
to be difficult, due to the lack of samples. To solve this problem, we proposed three
user-specific models: (1) Gaussian density (Model 1), (2) Gaussian density with ap-
proximated parameters (Model 2), and (3) heuristic model (Model 3). Experimental
results suggest that FVC2000 and FRGCs obtain better performances from Model
2, while FRGCt obtains better performances from Model 1. Generally speaking, the
genuine user PDF is associated with the biometric modality, as well as the feature
extraction method, thus how to choose the right model (e.g. Gaussian) is important.
Furthermore, how to accurately estimate the parameters (e.g. µ, σ) in the model is
also a problem to solve. There is no gold standard, and choosing the right model and
estimation method is a matter of how accurately it fits the features.

Apart from the user-specific models (Model 1/2/3), we also proposed a global
model (Model 4). Our experimental results suggest that in a system with multiple
enrollment samples per user, it is preferable to choose user-specific models. Neverthe-
less, Model 4 still has significant potentials: It is purely empirical and nonparametric,
avoiding all problems related with model based estimation; It is robust to unreliable
features; It is easily adaptable to all biometric systems.

Essentially, unlike the real-valued classifiers (e.g. MC and LC), which fully de-
pend on or ‘trust’ the feature density model, DROBA only partially depends on such
model. Thus we might see quantization under DROBA as a model oriented compres-
sion procedure, where the bit allocation is obtained according to the statistics of the
model but the data variation within every quantization interval is ignored, leading
to a binary string with compressed information. In fact, in Experiment I, we proved
that Hamming distance classifier with binary strings may outperform the MC and
LC with real-valued features: The applied density model (e.g. Model 1) is not accu-
rate, so that a compressed binary representation might be less prone to overfitting.
The compression can be optimized by carefully tuning the D − L or even the bmax

configurations in DROBA.

3.2.7 Conclusion

Generating binary strings from real-valued biometric measurements in fact acts as a
data compression process. Thus, in biometric applications, we aim to generate binary
strings that not only retain the discriminative information, but also are robust to
intra-class variations, so that the performance of the classification is ensured, while
the binary strings can be used in various applications. Basically, there are two factors
that influence the performance of the binary string: (1) the quantizer design of every
feature component; (2) the principle to compose the binary string from all the fea-
ture components. In this paper, independent of the quantizer design, we proposed a
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detection rate optimized bit allocation principle (DROBA), which can be achieved by
both a dynamic programming and a greedy search approach. Consequently DROBA
assigns more bits to discriminative features and fewer bits to non-discriminative fea-
tures. This process is driven by the statistics derived from the training and enrollment
data, based on which we proposed four models. Experiments on the FVC2000 finger-
print and the FRGC face database show promising results.

The DROBA principle has the advantage that it is adaptable to arbitrary biometric
modalities, such as fingerprint texture, iris, signature and face. Additionally, the
binary strings can be used in any kind of binary string based classifiers, as well as
crypto systems. The practical applications of the biometric binary strings are not only
limited to the template protection systems, but also systems requiring fast matching
or constrained storage capability. Furthermore, combined with various detection rate
estimation methods, binary strings generated under DROBA can be a new promising
biometric representation as opposed to the real-valued representation.

3.3 Chapter conclusion

In this chapter, a detection rate optimized bit allocation (DROBA) principle is
presented. Regarding the research objectives, DROBA is able to allocate a user-
dependent number of bits to every biometric feature, while maintaining a fixed total
length of the binary string. The extracted binary string has i.i.d. bits. Independent
of the quantizers that are used, DROBA optimizes the overall theoretical detection
rate, when the Hamming distance threshold is zero. Compared to quantizing every
feature into a prescribed fixed number of bits, as described in Chapter 2, combining
quantizers with DROBA yields better recognition performance. Furthermore, because
the bit allocation is user-dependent, the extracted bits are more reliable, which allows
for a longer length of the random key, or equivalently, a longer secret length.



58 Chapter 3. Detection Rate Optimized Bit Allocation



4
Area under the FRR Curve Optimized Bit

Allocation

4.1 Chapter introduction

PURPOSE. In chapter 3, a detection rate optimized bit allocation (DROBA)
principle was presented. Independent of the quantizers, DROBA aims to minimize
the theoretical FRR performance at zero Hamming distance threshold for a Hamming
distance classifier (HDC). As a result, a user-dependent number of bits is assigned to
every biometric feature, while maintaining a fixed total length of the binary string.
However, the theoretical FAR performance at zero Hamming distance threshold is
far below the required FAR range of a biometric system. Therefore, an advanced bit
allocation principle is required to optimize the overall FAR and FRR performances
for a HDC. Minimizing the area under the FRR curve over all possible Hamming
distance thresholds is such a principle. Furthermore, similar to DROBA, this new
bit allocation principle should be independent of the quantizers. Given independent
features and quantizers that can extract statistically independent and identically
distributed (i.i.d.) bits, the new bit allocation principle should preserve the i.i.d.
property.

CONTENTS. In this chapter, we first present a theoretical model of the HDC, based
on the bit error probabilities of independent biometric features. For an enrolled user,
the k-bit error probability of a feature is defined as the probability of having k erro-
neous bits between the quantized features at enrollment and verification. Thus, given
a quantizer and the number of quantization bits per feature, the corresponding bit er-
ror probabilities for every feature can be computed for both the genuine user and the

59
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imposters. Assuming independent features, the overall FAR and FRR performances
at a Hamming distance threshold are then predictable as a combination of these bit
error probabilities.

Given the theoretical model of the HDC, its theoretical FRR performance over all
possible Hamming distance thresholds can be computed. Therefore, we propose the
area under the FRR curve optimized bit allocation (AUF-OBA) principle. Given any
type of quantizer, for every feature of an enrolled user, the error probabilities with all
possible number of erroneous bits are computed at a range of allowed bits. AUF-OBA
then aims to minimize the theoretical area under the FRR curve over all Hamming
distance thresholds, subject to a fixed total number of bits. A dynamic programming
approach is then applied to search for the optimal solution. AUF-OBA can be applied
in both one- and two-dimensional quantization schemes. In this chapter, AUF-OBA
is presented in combination with the one-dimensional quantizers, as illustrated in
Fig. 4.1. Figure 4.2 shows the contribution of this chapter in the context of the thesis.
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Figure 4.1: Block diagram of the one-dimensional quantization and coding scheme, high-
lighted in AUF-OBA design. The vi, i = 1 . . . D denote D independent biometric features,
and bi denotes the assigned number of bits to the ith feature. The quantized bits si, i = 1 . . . D
from all D features are then concatenated into the binary string s.

PUBLICATION(S). The content of Section 4.2 has been published in [50].
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Figure 4.2: Block diagram of the main contributions, highlighted in chapter 4.

4.2 Extracting biometric binary strings with mini-
mal area under the FRR curve for the Hamming

distance classifier

Abstract

Extracting binary strings from real-valued biometric templates is a fundamental
step in template compression and protection systems, such as fuzzy commitment,
fuzzy extractor, secure sketch and helper data systems. Quantization and coding is
the straightforward way to extract binary representations from arbitrary real-valued
biometric modalities. Afterwards, the binary strings can be compared by means of
a Hamming distance classifier (HDC). One of the problems of the binary biometric
representations is the allocation of quantization bits to the features. In this paper, we
first give a theoretical model of the HDC, based on the features’ bit error probabilities
after the quantization. This model predicts the false acceptance rate (FAR) and
the false rejection rate (FRR) as a function of the Hamming distance threshold.
Additionally, we propose the area under the FRR curve optimized bit allocation
(AUF-OBA) principle. Given the features’ bit error probabilities, AUF-OBA assigns
variable numbers of quantization bits to features, in such way that the analytical area
under the FRR curve for the HDC is minimized. Experiments of AUF-OBA on the
FVC2000 fingerprint database and the FRGC face database yield good verification
performances. AUF-OBA is applicable to arbitrary biometric modalities, such as
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fingerprint texture, iris, signature and face.

4.2.1 Introduction

Binary representations for biometrics have drawn considerable interest for their merits
in template compression, and particularly template protection [40], [4]. Unprotected
storage and transfer of biometric information allows direct steal-and-use imperson-
ation, leading to identity theft, since biometric data are closely linked to individuals
and cannot be replaced.

Several biometric template protection concepts have been published, such as Bio-
hashing [14], [15], [16], [17], [18], cancelable biometrics [19], [20], biometric key gener-
ation [13], [5], [6], [7], [8], [9], [10], and biometric key binding [21], [32], [24], [22], [23],
[25], [26], [33], [27], [28], [29], [30]. Biohashing transforms biometric features accord-
ing to a user-specific secret key. Cancelable biometrics distort the image of a face or
a fingerprint by using a computationally non-invertible geometric distortion function.
Biometric key generation schemes directly generate a crypto key from the biometric
features. Biometric key binding schemes, including fuzzy commitment, helper data,
fuzzy vault, secure sketch, use biometric template to bind a crypto key. In the key
generation and key binding schemes, biometric templates are represented as binary
strings.

In this paper, we focus on extracting binary biometric strings for a key binding
verification scheme [22]. Thus, before being used for template protection purpose,
the biometric features need to be transformed into a binary string. Therefore, as
shown in Fig. 4.3, a template protected biometric verification system with binary
representations can be generalized into three modules.

helper data

K’

Hash(K’)

Hash(K)

random key K

Binary string

Classifier

Secure Key Binding VerificationVerification

Enrollment

Feature

Extraction

Secure Bit

Extraction
Key binding

Feature

Extraction

Secure Bit

Extraction

Real-valued

Classifier
Yes/No

Key release

Figure 4.3: The scheme of a template protected biometric verification system with binary
representations.
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Feature extraction: This module aims to extract independent, reliable and dis-
criminative real-valued features from raw measurements. Independent features are
highly desirable for template protection. Independent features are a condition for
achieving that the extracted bits in the next secure bit extraction module are in-
dependent, which is a requirement considering template security. In this paper we
apply classical techniques such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) [34] as an example, in order to achieve independent
features, but other more advanced feature extraction methods can also be used. In a
standard biometric system, the extracted features are compared through a real-valued
classifier.

Secure bit extraction: This module aims to transform the real-valued features into
a fixed-length binary string, which is used to bind a crypto key. Biometric information
is well-known for its uniqueness. Unfortunately, due to sensor and user behavior, it
is inevitably noisy, which leads to intra-class variations. Therefore, it is desirable to
extract binary strings that are not only discriminative, but also have low intra-class
variations. Such requirements translate to low false acceptance rate (FAR) and false
rejection rate (FRR), respectively. Additionally, in order to maximize the attacker’s
efforts in guessing the target template, the bits should be statistically independent
and identically distributed (i.i.d.). The straightforward way to extract bits is by
quantization and coding.

Secure key binding verification: This module, as presented in [22], aims to provide
verification when the target biometric string is protected and bound to a cypto key.
In the enrollment stage, a random crypto key K is encoded by an error-correcting
encoder into a codeword C. This codeword is further bound to the genuine binary
biometric string S through W = S ⊕ C. In the verification stage, a noisy version
C′ is released by the operation C′ = W ⊕ S′ of W and the query biometric string
S′. Afterwards, C′ is decoded into K ′ through error-correcting decoding. The final
‘Yes/No’ decision is made by comparing K ′ and the original K. Essentially, the key
binding verification process functions as a Hamming distance classifier (HDC) to the
binary biometric strings. That is, the access is granted if and only if the number
of bit errors between the target and the query strings is below a Hamming distance
threshold.

In this paper we focus on the secure bit extraction module by quantizing and
coding every feature individually. To extract bits from every feature involves two
tasks: designing the quantization intervals and determining the number of quantiza-
tion bits. The final binary string is then the concatenation of the output bits from
all the features.

First we give an overview of some bits extraction methods. As illustrated in Fig.
4.4, designing a quantizer relies on two probability density functions (PDFs) that are
analyzed for each feature: the background PDF and the genuine user PDF, represent-
ing the probability densities of the imposters and the genuine user, respectively. The
PDFs are estimated from training or enrollment samples, sometimes under Gaussian
assumptions. So far, a number of one-dimensional quantizers have been proposed
[24], [22], [23], [8], [46], [9], [39]. Quantizers in [24], [22], [23] are user-independent,
constructed merely from the background PDF, whereas quantizers in [8], [46], [9], [39]
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are user-specific, constructed from both the genuine user PDF and the background
PDF. Theoretically, user-specific quantizers provide better FAR and FRR perfor-
mances. Particularly, the likelihood-ratio based quantizer [39], which is optimal in
the Neyman-Pearson sense. Quantizers in [24], [8], [46] and [9] have equal-width
intervals. Unfortunately, this leads to potential threats: Features obtain higher prob-
abilities in certain quantization intervals than others, thus attackers can more easily
find the genuine interval by continuously guessing the one with the highest proba-
bility. To avoid this problem, quantizers in [22], [23] and [39] have equal-probability
intervals, which meets the i.i.d. bit requirements mentioned above.
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Figure 4.4: Two examples of quantizer, given the background PDF (solid), the genuine user
PDF (dot), and the quantization intervals (dash). (a) The distinctive genuine user PDF can
be quantized into 3 bits. (b) The non-distinctive genuine user PDF is only quantized into 1
bit.

Once the quantizer type has been determined, a bit allocation principle is desired
to determine the number of quantization bits for every single feature. So far, a
fixed bit allocation (FBA) principle [22], [23], [39] and a detection rate optimized bit
allocation (DROBA) principle [51] have been proposed. The FBA principle assigns a
fixed number of bits to every feature. As seen in Fig. 4.4, in order to obtain a low
overall error probability, it is efficient to extract more bits for a distinctive feature
and fewer bits for a non-distinctive feature [48]. The DROBA principle solves this
problem by assigning a variable number of bits based on the statistical properties
of every feature, so that the theoretical overall detection rate at the zero Hamming
distance threshold is maximized. It is worth mentioning that binary biometrics are
also used outside the context of template protection, such as the iris code [52], [53]
quantized by the iris features. Iris code uses a fixed bit allocation method based on
the approximation that the features are equally distinctive.

Although DROBA yields reasonably good performances, in Fig. 4.5 we illustrate
that in principle it only minimizes the FRR performance at zero Hamming distance
threshold. Thus it does not provide the optimal solution at the commonly used
operational points with a FAR between 10−4 to 10−2. Furthermore, as mentioned
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before, it is important to extract binary strings that provide good performances for
the Hamming distance classifier, since it models the secure classification that allows
a certain number of errors. Therefore, in this paper, we propose an area under the
FRR curve optimized bit allocation (AUF-OBA) principle for the Hamming distance
classifier.
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Figure 4.5: Illustration of DROBA and AUF-OBA principles.

We first show that given the features’ bit error probabilities after the quantization,
we can predict the analytical area under the FRR curve for the Hamming distance
classifier (HDC). Then we define the AUF-OBA problem and present a dynamic
programming approach to search for the solution.

This paper is organized as follows. In Section 4.2.2 we give the analytical perfor-
mance of a HDC, given the features’ bit error probability. In Section 4.2.3 we present
the AUF-OBA principle. Simulation results are illustrated in Section 4.2.4. In Section
4.2.5, we give some experimental results of AUF-OBA on the FVC2000 fingerprint
database and the FRGC face database. In Section 4.2.6 the results are discussed and
conclusions are drawn in Section 4.2.7.

4.2.2 Hamming distance classifier (HDC)

A HDC compares the target string and the query string by computing their Hamming
distance. As a result, the query string is accepted if and only if the Hamming distance
is smaller than a threshold. Consequently, by varying the threshold, the trade-off
between FAR and FRR can be varied. In this section, we show that for a biometric
verification problem, the FAR and FRR performance of a HDC can be analytically
computed, once the bit error probabilities for both the genuine user and the imposters
are known.
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We begin by defining the bit error probabilities for the binary strings. Sup-
pose a sequence of L bits is extracted from D independent real-valued features, i.e.∑D

j=1 bj = L, where bj bits are extracted from the jth feature.
During the enrollment, let sg,j denote the string of bj bits generated by the genuine

user for the jth feature. The entire L-bit string for the genuine user sg is then the
concatenation of the bits extracted from every single feature, i.e. sg = sg,1 . . . sg,D.
Similarly, during the verification, let s′g,j and s′i,j be the bits generated by the gen-

uine user and the imposters, respectively, for the jth feature, and s ′
g and s ′

i be their
corresponding entire L-bit string. We know that during the verification, due to the
intra-class variation, the genuine user might not extract the same string as the en-
rollment template, i.e. s′g,j 6= sg,j. Contrarily, the imposter might end up with the
same string as that of the genuine user in the enrollment, i.e. s′i,j = sg,j. Therefore,
we introduce the following definitions.

Definition 1. For the jth feature, we define the bit error probabilities for s′g,j and
s′i,j when compared to sg,j:

Pg,j(kj ; bj) = P{dH(sg,j , s
′
g,j) = kj}, kj ∈ 0, . . . , bj , (4.1)

Pi,j(kj ; bj) = P{dH(sg,j , s
′
i,j) = kj}, kj ∈ 0, . . . , bj , (4.2)

where dH is the Hamming distance between two input bit strings. Hence Pg,j and Pi,j

represent – for the genuine user and the imposters, respectively – the probability of
having kj bits error in the bj bits extracted for the jth feature during the verification.

Definition 2. Regarding a total of D features, we define the bit error probabilities
for s′g and s′i when compared to sg:

φg(k; {bj}
D
j=1) = P{dH(sg, s

′
g) = k}, k ∈ 0, . . . , L , (4.3)

φi(k; {bj}
D
j=1) = P{dH(sg, s

′
i) = k}, k ∈ 0, . . . , L , (4.4)

where φg(k) and φi(k) represent – for the genuine user and the imposters, respec-
tively – the probability of having k bits error in the entire L bits extracted during the
verification.

Note that the bit assignment {bj}Dj=1 determines the binary strings. Consequently
the bit error probabilities (e.g. Pg,j , Pi,j , φg, φi) depend on the bit assignment as
well. Assuming that the features are statistically independent, their bit errors will
also be independent. The total number of bit errors will be the sum of the bit
errors of the individual, independent features. Therefore, according to the sum rule
for independent random variables [54], the error probability of the whole feature set
equals the convolution of the individual probabilities of the features. Thus φg and φi

can be computed from the convolution of Pg,j and Pi,j :

φg(k; {bj}
D
j=1) = (Pg,1 ∗ Pg,2 ∗ . . . ∗ Pg,D)(k; {bj}

D
j=1) , (4.5)

φi(k; {bj}
D
j=1) = (Pi,1 ∗ Pi,2 ∗ . . . ∗ Pi,D)(k; {bj}

D
j=1) . (4.6)
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Expressions in (4.5) and (4.6) are the bit error probabilities of the binary string
for the genuine user and the imposters. Based on these, we can further compute the
analytical FAR and FRR performances of the HDC.

Definition 3. The FAR (α) at the Hamming distance threshold t, (0 ≤ t ≤ L), is
defined as:

α(t; {bj}
D
j=1) = P{dH(sg, s

′
i) ≤ t} . (4.7)

Given (4.4), we have

α(t; {bj}
D
j=1) =

t∑

k=0

φi(k; {bj}
D
j=1) . (4.8)

Furthermore, to obtain i.i.d. bits, an equal-probability quantizer ([22], [23], [39]),
with 2−bj probability mass for every interval, is required for the quantization of every
feature. Thus, for the jth feature, when assigned with 2bj code words, the Pi,j(kj ; bj),
as defined in (4.2), becomes:

Pi,j(kj ; bj) = 2−bj

(
bj
kj

)
. (4.9)

Subject to
∑D

j=1 bj = L, the FAR in (4.7) becomes:

α(t; {bj}
D
j=1) =

t∑

k=0

φi(k; {bj}
D
j=1) ,

= 2−L
t∑

k=0

(
L
k

)
. (4.10)

The proof of (4.10) is given in Appendix B. This expression shows that when quantized
by an equal-probability quantizer, the FAR only depends on the string length L and
becomes independent of the bit assignment {bj}

D
j=1.

Definition 4. Similarly, we define the FRR (β) at the Hamming distance threshold
t, (0 ≤ t ≤ L), as:

β(t; {bj}
D
j=1) = P{dH(sg, s

′
g) > t} . (4.11)

Given (4.3), we have

β(t; {bj}
D
j=1) =

L∑

k=t+1

φg(k; {bj}
D
j=1) . (4.12)



68 Chapter 4. Area under the FRR Curve Optimized Bit Allocation

4.2.3 Area under the FRR curve optimized bit allocation
(AUF-OBA)

Given the analytical FRR performance in (4.11), we compute the area under the FRR
curve as a criterion for the overall HDC performance. Furthermore, the performance
relies on the features’ bit error probability Pg,j(kj ; bj) after quantization, more pre-
cisely the bit assignment {bj}

D
j=1. Therefore, in this section, we give the {bj}

D
j=1

solution that optimizes the area under the FRR curve.

4.2.3.1 Problem Formulation

The optimization problem is defined for every genuine user. Suppose we need to
extract L bits from D independent real-valued features. For every feature, the back-
ground PDF and the genuine user PDF are assumed to be known, usually estimated
from the training or enrollment samples. Moreover, a quantizer is employed to quan-
tize the jth feature into bj bits, j = 1, . . . , D, bj ∈ {0, . . . , bmax}.

To minimize the area under the FRR curve, the optimization problem is formulated
as:

{b∗j}
D
i=1 = arg min∑

D
j=1

bj=L
AFRR ,

= arg min∑
D
j=1 bj=L

L∑

t=0

β(t; {bj}
D
j=1) , (4.13)

4.2.3.2 AUF-OBA Solution

We first reformulate the FRR in (4.12) into the following expression:

β(t; {bj}
D
j=1) =

L∑

l=0

u(l − (t+ 1))φg(l; {bj}
D
j=1) , (4.14)

with

u(l) =

{
1, l ≥ 0 ,
0, l < 0 .

(4.15)

The newly introduced function u allows us to enlarge the summation index range
from [k + 1, L] to [0, L], which simplifies the computation. Therefore the area under
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the FRR curve becomes:

AFRR =

L∑

t=0

β(t; {bj}
D
j=1) ,

=

L∑

t=0

L∑

l=0

[
u(l − (t+ 1))φg(l; {bj}

D
j=1)

]
,

=

L∑

l=0

[
φg(l; {bj}

D
j=1)

L∑

t=0

u(l − (t+ 1))

]
,

=

L∑

l=0

lφg(l; {bj}
D
j=1) . (4.16)

Expression (4.16) is the expected value of the number of bit errors k, which we
denote by E[k; {bj}Dj=1]. Hence, for a certain bit assignment {bj}Dj=1, AFRR equals

E[k; {bj}
D
j=1].

AFRR = E[k; {bj}
D
j=1] . (4.17)

Furthermore, we know that the k-bit error of a L-bit binary string come from D
real-valued features. Thus with kj (j = 1, . . . , D) bits error per feature. Furthermore,
we have that the expected value of a sum equals the sum of the expected values.
Therefore,

AFRR = E[k; {bj}
D
j=1] ,

=
D∑

j=1

E[kj ; bj ] , (4.18)

where E[kj ; bj] is the expected value of the number of errors kj for the jth feature:

E[kj ; bj ] =

bj∑

l=0

lPg,j(l; bj) . (4.19)

We can now reformulate the AUF-OBA problem as:

{b∗j}
D
j=1 = arg min∑

D
j=1 bj=L

D∑

j=1

E[kj ; bj ] . (4.20)

Furthermore, let Gj(bj) be a gain factor, defined as:

Gj(bj) = −E[kj ; bj ] . (4.21)
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The AUF-OBA then becomes a maximization problem:

{b∗j}
D
j=1 = arg min∑

D
j=1

bj=L

D∑

j=1

E[kj ; bj ] ,

= arg max∑
D
j=1 bj=L

D∑

j=1

Gj(bj) . (4.22)

With the gain factor defined in (4.21), the problem in (4.22) has the same form as the
DROBA optimization problem presented in [51]. Therefore, solving (4.22) involves
two steps: (1) computing Gj(bj) for every feature j; (2) finding the optimal {b∗j}

D
j=1

through the same dynamic programming procedure as proposed in DROBA [51].

4.2.3.3 Computing Gj(bj)

To compute Gj(bj), the genuine user bit error probability Pg,j(kj ; bj) is required. As
defined in (4.1), given the feature’s genuine user PDF pg,j, the quantizer and the
number of quantization bits bj, we can compute Pg,j(kj ; bj) as:

Pg,j(kj ; bj) =

∫

Q(kj ;bj)

pg,j(v)dv , (4.23)

where Q(kj ; bj) indicates the quantization intervals with kj-bit error as compared to
the genuine code sg,j. An example of these intervals encoded by a Gray code [44] is
illustrated in Fig. 4.6.

Figure 4.6: An example of computing Pg,j(kj ; bj) for the jth feature, assigned with bj = 2
bits Gray code. The genuine user PDF pg,j (black curve); Q(0; 2) with the genuine code ’11’
(grey); Q(1; 2) with 1-bit error (blue); and Q(2; 2) with 2-bit error (white).
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4.2.3.4 Dynamic programming approach

The optimization problem in (4.22) has the same form as DROBA [51]. Therefore,
once the Gj(bj) is computed, (4.22) can be solved by a common recursive dynamic
programming approach, as described in Appendix C. As explained in [51], the es-
sential concept is that the optimal bits assignment for j features can be computed
directly from the optimal bits assignment for j − 1 features. Therefore, the final op-
timal bits assignment can be computed through an iterative procedure. The number
of operations per iteration step is about O((j − 1)× b2max), leading to a total number
of operations of O(D2 × b2max), which is significantly less than a brute force search.

4.2.4 Simulations on Synthetic Data

In this section we test the HDC performances of the bit strings extracted with AUF-
OBA, on randomly generated independent features. The background PDF of every
feature is generated as a Gaussian density with zero-mean and unit-variance, i.e.
pb,j = N(v, 0, 1). Additionally, the genuine user PDF of every feature is generated
as a Gaussian density with user-specific mean and standard deviation, i.e. pg,j =
N(v, µj , σj). The quantizer that we employed to compute Pg,j(kj ; bj) in (4.23) is the
user-independent equal-probability quantizer [22], [23], [39], defined as :

B0 = −∞ , (4.24)

Bm = argB

[ ∫ Bm

Bm−1

pb,jdv = 2−bj

]
,m = 1, . . . , 2bj , (4.25)

where (Bm−1, Bm] represents the mth quantization interval. The quantization sym-
bols are assigned with Gray code, and we set bmax = 3. Thus, given D features and
a predetermined length L, we search for the {bj}

D
j=1 through the DP process in Ap-

pendix C. Afterwards, we compute the corresponding FAR and FRR performances
for HDC according to (4.10) and (4.11).

Figure 4.7 shows the FAR vs. FRR performances by increasing the binary string
length (L = 31, 63, 127), given a fixed set of features (D = 50). Results show that
there exist a number of bits (e.g. close to L = 63) that gives the optimal trade-off in
terms of FAR and FRR.

Figure 4.8 shows the FAR vs. FRR performances by increasing the input features
(D = 50, 100, 150), at a predetermined string length (L = 127). The FAR performance
merely depends on L and thus is fixed. While increasing the number of features, the
FRR performances always improve. This result suggests that AUF-OBA tends to
extract distinctive bits as the number of input features increases.

In Fig. 4.9, we further compare the FAR vs. FRR performances between AUF-
OBA and DROBA, at D = 50, L = 127. Although DROBA minimizes the highest
FRR at zero Hamming distance threshold, AUF-OBA obtains lower FRR at the
operational area where FAR is between 10−4 and 10−2.

In the simulations, both the background PDF and the genuine user PDF are
assumed to be Gaussian. In Section 4.2.5.2 we tested this Gaussian assumption on
real data.
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Figure 4.7: The FAR vs. FRR performances of AUF-OBA on the synthetic features, when
the output L=31, 63 and 127, at D=50.
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Figure 4.8: The FAR vs. FRR performances of AUF-OBA on the synthetic features, when
the input D=50, 100 and 150, at L=127.
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Figure 4.9: The FAR vs. FRR performances of AUF-OBA on the synthetic features,
compared with DROBA, at D=50, L=127.

4.2.5 Real Data Experiments

In this section we conduct the experiments with AUF-OBA on real data. We first
investigate the verification performances while varying the input feature dimension-
ality D and the output binary string length L. From the best D-L settings we analyze
the bits capacity of the features. Afterwards, we compare AUF-OBA with DROBA.
Finally, we discuss the independent Gaussian hypothesis by comparing the empirical
results with the predicted FAR and FRR performances.

4.2.5.1 Experimental Setup

We tested the AUF-OBA on three data sets, derived from the FVC2000(DB2) fin-
gerprint database [35] and the FRGC(version 1) face database [37]. One important
consideration for biometric protection system is that it is not allowed to conduct the
user-specific image alignment, since the reference image, as a template, is encrypted.
Therefore, we could only rely on absolute alignment methods or alignment-free mea-
surements. In this paper, we applied basic absolute alignment methods.

• FVC2000: This is the FVC2000(DB2) fingerprint data set, containing 8 im-
ages of 110 users. Images are aligned to an automatically detected standard
core point position through translation. As illustrated in Fig. 4.10, the raw
measurements contain two categories: the squared directional field in both x
and y directions, and the Gabor response in 4 orientations (0, π/4, π/2, 3π/4).
Determined by a regular grid of 16 by 16 points with spacing of 8 pixels, mea-
surements are taken at 256 positions, leading to a total of 1536 elements [22].
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• FRGCH: This is a subset of FRGC(version 1), containing 275 users with var-
ious numbers of high quality images, taken under controlled conditions. The
number of samples n per user ranges from 4 to 36. As illustrated in Fig. 4.11, a
set of four standard landmarks, i.e. eyes, nose and mouth, is used to align the
faces to a standard reference face. The measurements with 8762 elements are
the gray pixel values, picked from a region of interest (ROI) with size 128×128.

• FRGCL: This is a subset of FRGC(version 1), containing 198 users with low
quality images (n from 4 to 16), taken under uncontrolled conditions. The
alignment and measurements are the same as FRGCH.

Figure 4.10: (a) Fingerprint image, (b) directional field, (c)-(f) the absolute values of
Gabor responses for different orientations θ.

Figure 4.11: (a) Controlled image, (b) uncontrolled image, (c) landmarks and (d) the region
of interest (ROI).

We randomly selected different users for training and testing and repeated our exper-
iment with a number of trials. The data division is described in Table 4.1.

Our experiments involved three steps: training, enrollment and verification. Ac-
cording to the requirement for the feature extraction module, independent features
are necessary. Thus, any method that extracts independent features can be applied.
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Table 4.1: Data division: number of users×number of samples per user(n), and the number
of trials for FVC2000, FRGCH and FRGCL.

Training Enrollment Verification Trials
FVC2000 80× n 30× 3n/4 30× n/4 20
FRGCH 210× n 65× 3n/4 65× n/4 5
FRGCL 150× n 48× 2n/3 48× n/3 5

During the training step in our experiment, we applied a common PCA/LDA [42]
method on the training set. That is, we first applied PCA to obtain the projections
on the eigenvectors at a reduced dimensionality. Based on which we further applied
LDA to pick the eigenvectors that yield the largest within and between class scatters.
The obtained transformation was then applied to both the enrollment and verification
sets. We assume that the measurements are with Gaussian density, thus after the PCA
transformation, the extracted features are statistically independent. Additionally, the
LDA method we applied assumes user-independent intra-class variance, so that the
extracted features are statistically independent for every genuine user as well. In the
enrollment step, for the jth feature, we first have to estimate both the background
PDF pb,j and the genuine user PDF pg,j. In [51], it is shown that modeling every
feature as Gaussian density gives reasonably good performances. Therefore, we model
both PDFs as Gaussian density pb,j = N(v, 0, 1), pg,j = N(v, µj , σj). Additionally,
we set bmax = 3, and the gain factor Gj was computed from the fixed quantizer in
(4.25). Afterwards, we applied the AUF-OBA for every genuine user. Based on the
output bit assignment {b∗j}

D
j=1, the features were coded with Gray code. In the ver-

ification step, the features of the query user were quantized and coded according to
the {b∗j}

D
j=1 of the target user, resulting in a query binary string. Finally the query

binary string was compared with the target binary string by using a HDC.

4.2.5.2 Experimental Results

Verification Performance

We tested the binary strings at length L = 31, 63, 127 and 255, extracted from
various numbers of features D. The FAR vs. FRR performances for FVC2000,
FRGCH and FRGCL are shown in Fig. 4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15, Fig. 4.16
and Fig. 4.17, where the FAR is plotted as a log scale. Since the Hamming distance
threshold is an integer, the FAR and FRR performances are discrete.

We first investigate the performances at fixed L by increasing D. For FVC2000,
we first applied both PCA and LDA transformation, given L, when the number of
features D increases, the performance improves, yet still not satisfying. The reason
might be the dimensionality limit (Dmax = number of training user − 1 = 79) from
LDA. To solve this problem, we relax the independency constraint for the genuine user
by only applying the PCA transformation, and the performance improves. Figure 4.14
and 4.15 suggests that for the high quality data FRGCH, given L, when the number
of features D increases, the overall FAR vs. FRR performance improves and becomes
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stable. These results are consistent to the synthetic data performances in Fig. 4.8
and prove that AUF-OBA can effectively extract distinctive bits when the feature
dimensionality is high. Contrarily, Fig. 4.16 and 4.17 suggests that for the low
quality data FRGCL, given L, when the number of features D increases, the overall
FAR vs. FRR performance improves. However, when D ≫ L, as seen with L = 31
and 63 in Fig. 4.16(a), 4.16(b), the performance starts to deteriorate. The reason
is that at a high dimensionality after PCA/LDA transformation, the features of the
low quality data become less reliable, and the error probabilities estimated from such
features are not accurate. Consequently, AUF-OBA no longer provides the effective
bit assignment.

We then investigate the performances at fixed D by increasing L. All three data
sets show that given D features, the moderate length L = 127 gives the best per-
formances. These results are consistent to the synthetic data performances in Fig.
4.7. It proves that given a number of features, a maximum number of bits can be
extracted that gives the best performances in terms of FAR vs. FRR.

To further investigate the performances at the operational points, we picked the
D-L settings with the best performances around the operational points. The FAR
vs. FRR performances for FVC2000, FRGCH and FRGCL are listed in Table 4.2.
Results show that regarding a compression or template protection system, the FRR
performances at FAR ≈ 10−4 are reasonably good, especially for the high quality data
FRGCH.

Bit Capacity of Features

Since AUF-OBA enables more quantization bits for distinctive features than for
non-distinctive feature, the bit assignment to some extent indicates the feature dis-
tinctiveness. Therefore, we take the best D-L settings in Table 4.2, and in Fig. 4.18
we plot the bit assignment histogram for the features, averaged over all genuine users.
All three data sets show consistent results. A large proportion of features are assigned
with 0 bits or discarded, which means these features are not distinctive. However,
only few features are distinctive enough to extract 2 or 3 bits.

Comparison with DROBA

In Fig. 4.9 we showed that theoretically AUF-OBA is superior to DROBA con-
cerning the performances at the operational points. Now we further compare their
performances on the real data. In Fig. 4.19 we illustrate their performances at
the same D-L settings. Results show that AUF-OBA is indeed slightly better than
DROBA.

Considerations about the independent Gaussian assumption

One important assumption in AUF-OBA is – for both the imposters and the gen-
uine user – the independency among the features. In our experiments, we assume
that the measurements are with Gaussian density, thus after the PCA transforma-
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Figure 4.12: The FAR vs. FRR performances for FVC2000 extracted with AUF-OBA,
from various numbers of features D, at (a) L = 31; (b) L = 63; (c) L = 127.
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Figure 4.13: The FAR vs. FRR performances for FVC2000 extracted with AUF-OBA,
from various numbers of features D, at L = 255.

Table 4.2: The FAR vs. FRR performances for (a) FVC2000, (b) FRGCH and (c) FRGCL.

FVC2000 FRR FAR FRR FAR FRR FAR
(%) (%) (%)

D=250, L=31 23.2 0.02 16.1 0.1 5.0 1.8
D=250, L=63 22.0 0.01 9.9 0.1 4.0 1.0
D=250, L=127 22.0 0.01 8.3 0.1 2.6 1.0
D=250, L=255 29.4 0.01 12.4 0.1 4.1 1.1

(a)

FRGCH FRR FAR FRR FAR FRR FAR
(%) (%) (%)

D=100, L=31 6.5 0.01 2.3 0.2 0.7 1.8
D=200, L=63 5.7 0.01 1.7 0.1 0 1.7
D=200, L=127 4.7 0.01 1.8 0.1 0 1.4
D=200, L=255 6.4 0.01 2.6 0.1 1.4 1.0

(b)

FRGCL FRR FAR FRR FAR FRR FAR
(%) (%) (%)

D=80, L=31 21 0.02 8 0.2 3 1.6
D=80, L=63 15 0.01 5 0.1 3 1.6
D=149, L=127 12 0.01 6 0.1 3 1.0
D=149, L=255 18 0.01 10 0.1 5 1.0

(c)
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Figure 4.14: The FAR vs. FRR performances for FRGCH, with varying D (NPCA = 250,
NLDA = D), at (a) L = 31; (b) L = 63; (c) L = 127.
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Figure 4.15: The FAR vs. FRR performances for FRGCH, with varying D (NPCA = 250,
NLDA = D), at L = 255.

tion, the extracted features are independent Gaussian density. Furthermore, in our
LDA transformation, we assume that every feature has user-independent intra-class
variance, so that the extracted features are also independent for every genuine user.
Now we investigate whether the real data comply with these assumptions. However,
formally testing the independent Gaussian hypothesis is not within the scope of this
paper.

As in the previous experiments, computing the {b∗j}
D
j=1 output of AUF-OBA is

based on the independent Gaussian density pg,j , pb,j. Then, according to (4.10) and
(4.11), we can compute the theoretical FAR as well as the theoretical averaged FRR
performances over all the genuine users. Furthermore, given the {b∗j}

D
j=1, we can

evaluate the FAR vs. FRR performance on both the enrollment and the verification
data sets. Thus, by comparing the real data and the theoretical performances, we
could evaluate whether the real data comply with the independency and the Gaussian
density assumptions. In Fig. 4.20 we give an example of the performances for FRGCH,
at D = 200, L = 127. The overall FAR performance of both the enrollment and
verification sets are consistent to the theoretical result, showing that the background
PDF fits the Gaussian density and the independency assumption. This results further
suggests that the extracted bits are i.i.d.. However, the empirical averaged FRR
performance is higher than the theoretical prediction, suggesting that the features for
the genuine user is not fully Gaussian or independent.

4.2.6 Discussion

An important assumption in AUF-OBA is that after feature extraction (e.g.
PCA/LDA), the features are independent among both the entire populations and
the genuine user. In Section 4.2.5.2 we proved the independency among the entire
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Figure 4.16: The FAR vs. FRR performances for FRGCL, with varying D (NPCA = 250,
NLDA = D), at (a) L = 31; (b) L = 63; (c) L = 127.
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Figure 4.17: The FAR vs. FRR performances for FRGCL, with varying D (NPCA = 250,
NLDA = D), at L = 255.
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Figure 4.18: An example of the bit assignment histogram for the features, averaged over all
genuine users, for FVC2000, FRGCH and FRGCL.
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Figure 4.19: The FAR vs. FRR performances of AUF-OBA, compared with DROBA, for
(a) FVC2000, (b) FRGCH and (c) FRGCL.
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Figure 4.20: Comparing the theoretical FAR vs. FRR performances with the FAR vs. FRR
performances on the enrollment and verification data.

populations. Although it is not true for the genuine user, we see that AUF-OBA still
works in such relaxed condition and provides reasonably good FRR performances.

Although AUF-OBA provide an optimal way to extract variable bits, the perfor-
mances of a template protection biometric system relies on the other factors as well.
For instance aligning the query image for the specific biometric modality, reliably
extracting independent features, and applying the error correcting technique with
higher correction capability. From the template protection system perspective, these
methods still need further investigation.

4.2.7 Conclusion

Binary biometric representations are becoming popular for its benefits in template
compression and protection. Quantization and coding is the common way to achieve
the binary representation from arbitrary biometric modalities. One of the problems
in the quantization is the allocation of quantization bits to the features. In this paper,
we first give a theoretical model of the HDC, based on the bit error probability after
quantization. This model predicts the FAR and the FRR as a function of the Ham-
ming distance threshold. Additionally, we propose the AUF-OBA principle. Given
the features’ bit error probabilities after quantization, AUF-OBA assigns variable
numbers of quantization bits to features, in such way that the analytical area under
the FRR curve for the HDC is minimized. AUF-OBA is capable of achieving low FRR
at a wide range of Hamming distances thresholds, rather than the DROBA princi-
ple which optimizes the FRR at Hamming distance threshold zero. Experiments of
AUF-OBA on the FVC2000 fingerprint database and the FRGC face database yield
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good verification performances.

4.3 Chapter conclusion

In this chapter, a bit allocation principle AUF-OBA is presented. Regarding the re-
search objectives, AUF-OBA is able to allocate a user-dependent number of bits to
every biometric feature, while maintaining a fixed total length of the binary string.
The extracted binary string has i.i.d. bits. Superior to DROBA, which optimizes
the theoretical FRR performance at zero Hamming distance threshold, AUF-OBA
optimizes the overall FRR over all Hamming distance thresholds. As a result, inde-
pendent of quantizers, AUF-OBA yields better overall FAR and FRR performances.
Furthermore, the extracted bits are more reliable, which allows for a longer length of
the random key, or equivalently, the length of the secret.
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5
Weighted Area under the FRR Curve

Optimized Bit Allocation

5.1 Chapter introduction

PURPOSE. In Chapter 3 and 4, two bit allocation principles were presented to
assign various numbers of bits according to a Hamming distance classifier (HDC): the
detection rate optimized bit allocation (DROBA) and the area under the FRR curve
optimized bit allocation (AUF-OBA). Both principles aim to optimize the recognition
performances for a HDC: DROBA optimizes the theoretical FRR performance when
the Hamming distance threshold is zero, while AUF-OBA optimizes the area under
the FRR curve over all the Hamming distance thresholds. Although AUF-OBA is
superior to DROBA by considering a wider range of Hamming distance thresholds,
often in biometric applications, only a partial, rather than the entire range of the
Hamming distance thresholds is important. Therefore, the purpose of this chapter is
to provide a bit allocation principle that optimizes the area under the FRR curve with
an emphasis on a certain range of Hamming distance thresholds. Similar to DROBA
and AUF-OBA, this new bit allocation principle should be independent of the
quantizers. Given independent features and quantizers that can extract statistically
independent and identically distributed (i.i.d.) bits, the new bit allocation principle
should preserve the i.i.d. property.

CONTENTS. In this chapter, we present a weighted area under the FRR curve
optimized bit allocation (WAUF-OBA) principle, where the area is emphasized
with an exponential weight function. Based on the bit error probabilities of the
biometric features, a theoretical HDC model predicts the FAR and FRR performance

87
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at the Hamming distance threshold t. WAUF-OBA then aims to optimize the
area of the FRR performances over all possible Hamming distance thresholds, with
an exponential weight function z−t for each threshold t. Parameter 0 < z < 1
emphasizes the FRR performances in the range of large Hamming distance threshold
t, whereas z > 1 emphasizes the FRR performances in the range of small t. A
dynamic programming approach is then applied to search for the optimal solution.
WAUF-OBA is a generalization of the DROBA when z = 1, or AUF-OBA when
z → ∞. WAUF-OBA can be applied in both one- and two-dimensional quantization
schemes. In this chapter, WAUF-OBA is presented in combination with the one-
dimensional quantizers, as illustrated in Fig. 5.1. Figure 5.2 shows the contribution
of this chapter in the context of the thesis.
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Figure 5.1: Block diagram of the one-dimensional quantization and coding scheme, high-
lighted in WAUF-OBA design. The vi, i = 1 . . . D denote D independent biometric features,
and bi denotes the assigned number of bits to the ith feature. The quantized bits si, i = 1 . . . D
from all D features are then concatenated into the binary string s.

PUBLICATION(S). The content of Section 5.2 has been published in [55].

5.2 Extracting biometric binary strings with opti-
mal weighted area under the FRR curve for the
Hamming distance classifier

Abstract

Binary biometric representations are becoming popular for their benefits in template
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Figure 5.2: Block diagram of the main contributions, highlighted in chapter 5.

compression and protection. The straightforward method to extract the binary bio-
metric strings is by quantization and coding the real-valued features. Afterwards, the
binary strings are compared by means of a Hamming distance classifier (HDC). In this
paper, we first give expressions for the theoretical false acceptance rate (FAR) and
false-rejection rate (FRR) of the HDC, based on the features’ bit error probability
after the quantization. One of the problems of binary biometric representations is
the allocation of quantization bits to the biometric features. Therefore, we propose
a bit allocation principle (WAUF-OBA) that minimizes the exponentially weighted
area under the FRR curve. We show that this method is a generalization of the bit
allocation principles that minimize the area under the FRR curve (AUF-OBA), or
the FRR at zero Hamming distance threshold (DROBA).

5.2.1 Introduction

Binary biometric representations are used in template compression and protection
[4]. The binary strings should result in a low false acceptance rate (FAR) and false
rejection rate (FRR). Additionally, the bits should be independent and identically
distributed (i.i.d), in order to maximize the efforts of guessing the genuine template.

The common way to extract binary strings is quantizing and coding the real-valued
features: Firstly, by means of the PCA/LDA transformation, independent features
are extracted from the raw measurements. Afterwards, features are quantized indi-
vidually. The final binary string is then the concatenation of the bits extracted from
every feature. To obtain i.i.d bits, equal-probability quantizers have been proposed
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[22], [23], [39]. Furthermore, independent of the quantizer design, several bit alloca-
tion principles have been proposed to determine the number of quantization bits for
every feature. Based on the feature density distribution, a detection rate optimized
bit allocation principle (DROBA) [56] was proposed to minimize the theoretical FRR
at zero Hamming distance threshold. Unfortunately, it does not correspond to the
operational points with a FAR between 10−4 and 10−2. Therefore, an area under the
FRR curve optimized bit allocation principle (AUF-OBA) was proposed to minimize
the theoretical area under the FRR curve for the Hamming distance classifier (HDC).

In this paper, we propose a weighted area under the FRR curve optimized bit
allocation principle (WAUF-OBA), where the area is emphasized with an exponential
weight function. We first show in Section 5.2.2 that given the features’ bit error
probabilities after the quantization, we can predict the theoretical FAR/FRR as well
as the weighted area under the FRR curve for the HDC. Then, in Section 5.2.3, we
present the bit allocation solution that minimizes this area, and we prove that WAUF-
OBA is a generalization of DROBA and AUF-OBA. In Section 5.2.4, we give some
simulation results on the synthetic data and conclusions are drawn in Section 5.2.5.

5.2.2 Hamming Distance Classifier (HDC)

Suppose a sequence of L bits is extracted from D independent features, i.e.
∑D

i=1 bi =
L, where bi bits are extracted from the ith feature. During the enrollment, let sg,i
denote the bi bits generated by the genuine user for the ith feature. The entire
L-bit string for the genuine user, sg, is then sg = sg,1 . . . sg,D. Similarly, during
the verification, let s′g,i and s′i,i be the bits generated by the genuine user and the

imposters, respectively, for the ith feature, and s ′
g and s ′

i be their corresponding entire

L-bit strings. Then we can define the bit error probabilities for s ′
g and s ′

i for the ith

feature:

Pg,i(ki; bi)
def
= P{dH(sg,i, s

′
g,i) = ki} , (5.1)

Pi,i(ki; bi)
def
= P{dH(sg,i, s

′
i,i) = ki}, ki ∈ 0, . . . , bi , (5.2)

where dH is the Hamming distance between two input bit strings. Hence Pg,i and Pi,i

represent – for the genuine user and the imposters, respectively – the probability of
having ki bits error in the bi bits extracted for the ith feature during the verification.

Regarding a total of D features, we define:

φg(k; {bi})
def
= P{dH(sg, s

′
g) = k} , (5.3)

φi(k; {bi})
def
= P{dH(sg, s

′
i) = k}, k ∈ 0, . . . , L , (5.4)

where φg(k) and φi(k) represent – for the genuine user and the imposters, respectively
– the probability of having k bits error in the entire L bits extracted during the
verification. Assuming independency among the features, the error probability of the
whole feature set equals the convolution of the individual probabilities. Thus:

φg(k; {bi}) = (Pg,1 ∗ Pg,2 ∗ . . . ∗ Pg,D)(k; {bi}) , (5.5)

φi(k; {bi}) = (Pi,1 ∗ Pi,2 ∗ . . . ∗ Pi,D)(k; {bi}) . (5.6)
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Expressions in (5.5) and (5.6) are defined as the bit error probabilities of the binary
string for the genuine user and the imposters. Based on these, we can compute the
analytical FAR and FRR performances of the HDC. Thus, the FAR (α(t; {bi}) at the
Hamming distance threshold t is:

α(t; {bi})
def
= P{dH(sg, s

′
i) ≤ t} ,

=

t∑

k=0

φi(k; {bi}) , i = 1, . . . , D . (5.7)

Furthermore, to obtain i.i.d bits, an equal-probability quantizer [22], [23], [39], with
2−bi probability mass for every interval, is required for the quantization of every
feature. Thus, for the ith feature, when assigned with 2bi code words, the Pi,i(ki; bi),
as defined in (5.2), becomes:

Pi,i(ki; bi) = 2−bi

(
bi
ki

)
. (5.8)

Subject to
∑D

i=1 bi = L, the FAR in (5.7) becomes:

α(t; {bi}) = 2−L
t∑

k=0

(
L
k

)
. (5.9)

This expression proves that when quantized by an equal-probability quantizer, the
FAR depends on the string length L and becomes independent of the bit assignment
{bi}.

Similarly, the FRR (β(t; {bi}) at the Hamming distance threshold t is:

β(t; {bi})
def
= P{dH(sg, s

′
g) > t} ,

=

L∑

k=t+1

φg(k; {bi}) , i = 1, . . . , D . (5.10)

5.2.3 Weighted area under the FRR curve optimized bit allo-
cation (WAUF-OBA)

Given the analytical FRR performances in (5.10), we compute the weighted area
under the FRR curve as a criterion for the overall HDC performance. Furthermore,
the area depends on the bit assignment {bi}. Therefore, in this section, we give a {bi}
solution that minimizes the weighted area under the FRR curve.

5.2.3.1 Problem Formulation

The optimization problem is user dependent. Suppose we need to extract L bits
from D independent real-valued features. For every single feature, a background
probability density function (PDF) and a genuine user PDF are known. The ith
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feature is quantized into bi bits, i = 1, . . . , D, bi ∈ {0, . . . , bmax}. The problem is then
formulated as:

{b∗i } = arg min∑
D
i=1

bi=L

L∑

t=0

z−tβ(t; {bi}), z > 0 , (5.11)

where z−t is an exponential weight function. 0 < z < 1 emphasizes the FRR per-
formances in the range of large Hamming distance threshold t. Contrarily, z > 1
emphasizes the FRR performances in the range of small t.

In Appendix D, we give the solution of (5.11), with respect to the value of z. In
the following part of this section, we present the simplified problem, which can by
solved by a dynamic programming approach.

5.2.3.2 WAUF-OBA: 0 < z < 1 or z > 1

Let Gi denote a gain factor for the ith feature when quantized into bi bits:

Gi(bi) = −

∣∣∣∣ log
( bi∑

ki=0

z−kiPg,i(ki, bi)

)∣∣∣∣ . (5.12)

The Gi(bi) is the logarithm of a weighted sum over the probability Pg,i(ki, bi). There-
fore, we reformulate (5.11) into:

{b∗i } = arg max∑
D
i=1

bi=L

D∑

i=1

Gi(bi) . (5.13)

By maximizing the sum of Gi over all the D features subject to L bits, we in fact
minimize a weighted overall probability of producing bit errors for the genuine user.

Computing the gain factor Gi relies on the Pg,i(ki; bi), as defined in (5.1). Given
the real-valued genuine user PDF pg,i as well as a quantizer, we can compute
Pg,i(ki; bi) as:

Pg,i(ki; bi)
def
= P{dH(sg,i, s

′
g,i) = ki} ,

=

∫

Q(ki;bi)

pg,i(v)dv , (5.14)

where Q(ki; bi) indicates the quantization intervals with ki-bit error as compared to
the genuine code sg,i. After Gi is determined, a common dynamic programming
procedure, as described in [56], is applied to search for the optimal {bi} solution.

5.2.3.3 WAUF-OBA: z = 1

AUF-OBA is a particular case of WAUF-OBA when z = 1. Thus the points on the
FRR curve are treated equally. We define the gain factor Gi(bi) as:

Gi(bi) = −
bi∑

ki=0

kiPg,i(ki, bi) . (5.15)
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With this definition, we reformulate the problem into (5.13). Note that WAUF-OBA
(z = 1) can also be interpreted as to minimize the expected value of the total number
of error bits.

5.2.3.4 WAUF-OBA: z → ∞

DROBA is an extreme case of WAUF-OBA when z → ∞. Thus the FRR performance
is only minimized at zero Hamming distance threshold (t = 0). We define the gain
factor Gi as:

Gi(bi) = logPg,i(0, bi) . (5.16)

Only the Pg,i(ki; bi) with ki = 0 determines the value of the gain factor Gi, and with
this definition we reformulate the problem into (5.13).

5.2.4 Evaluation on synthetic data

In this section we test the HDC performances of the bit strings extracted with WAUF-
OBA, on randomly generated synthetic features. The background PDF of every
feature is generated as a Gaussian density with zero-mean and unit-variance, i.e.
pb,i = N(v, 0, 1). Additionally, the genuine user PDF of every feature is generated
as a Gaussian density with user-specific mean and standard deviation, i.e. pg,i =
N(v, µi, σi). The quantizer that we employed to compute Pg,i(ki; bi) is the user-
independent equal-probability quantizer [22], [23], [39], defined as :

B0 = −∞ , (5.17)

Bj = argB

[ ∫ Bj

Bj−1

pb,idv = 2−bi

]
, j = 1, . . . , 2bi , (5.18)

where (Bj−1, Bj ] represents the jth quantization interval. The quantization symbols
are assigned with Gray code, and we set bmax = 3. Thus, given D features and a
predetermined length L, we search for the {bi} through the dynamic programming
process in [56]. Afterwards, we compute the theoretical FAR/FRR performances for
HDC from (5.9) and (5.10).

In the earlier work of DROBA (z → ∞) [56], the FAR/FRR performances with
respect to the D/L settings have been analyzed: There exists a good choice at a
moderate length L when D is fixed. Furthermore, when L is fixed, increasing D
will not decrease the performance. Such properties are consistent in the general case
(z > 0). Therefore, in this paper, we only present the properties in terms of z values
at a fixed D/L setting, e.g. D = 50, L = 50, as seen in Fig. 5.3. The minimized area
under the FRR curve are 0.240 for z → ∞, 0.236 for z = 1, and 0.261 for z = 0.2,
respectively. In general, z = 1 gives the best overall FRR curve. Additionally, Fig.
5.3(b) shows that z = 0.2 gives lower FRR performance at larger t. Unfortunately,
z → ∞ does not present a considerably lower FRR performance at smaller t.
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Figure 5.3: (a) The FAR/FRR performances with different z values, and (b) the ratio of
their FRR performances, at D = 50, L = 50.

5.2.5 Conclusion

In this paper, we first give a theoretical model of the Hamming distance classifier
(HDC), based on the features’ bit error probabilities after the quantization. This
model predicts the FAR and the FRR as a function of the Hamming distance thresh-
old. Additionally, we introduce an exponential weight function to formalize the ana-
lytical weighted area under the FRR curve. One of the problems in binary biometric
representations is the allocation of quantization bits to the features. Therefore, we
propose a bit-allocation principle (WAUF-OBA) that minimizes the exponentially
weighted area under the FRR curve. We show that this method is a generalization of
the bit allocation principles that minimize the area under the FRR curve (AUF-OBA),
or the FRR at Hamming distance threshold zero (DROBA).

5.3 Chapter conclusion

In this chapter, a bit allocation principle WAUF-OBA is presented. Regarding the
research objectives, WAUF-OBA is able to allocate a user-dependent number of bits
to every biometric feature, while maintaining a fixed total length of the binary string.
The extracted binary string has i.i.d. bits. Superior to DROBA and AUF-OBA,
WAUF-OBA optimizes the overall FRR performances with an exponential weighting
function. As a result, independent of quantizers, WAUF-OBA yields better overall
FAR and FRR performances at the emphasized range of Hamming distance thresh-
olds. Furthermore, the extracted bits are more reliable, which allows for a longer
length of the random key.



6
Two-dimensional Polar Quantizer

6.1 Chapter introduction

PURPOSE. In Chapter 2, one-dimensional quantizers, the fixed quantizer (FQ)
and the likelihood ratio based quantizer (LQ), are presented. Both quantizers are
capable of extracting multiple statistically independent and identically distributed
(i.i.d.) bits. Superior to FQ, LQ determines quantization intervals with the
maximized theoretical detection rate, given a prescribed fixed number of quan-
tization bits per feature. Although one-dimensional quantizers yield reasonably
good FAR and FRR performances, quantizing every feature independently ends up
with inflexible quantization intervals, for instance, orthogonal boundaries in the
two-dimensional feature space. Therefore, the purpose of this chapter is to design
two-dimensional quantizers. The two-dimensional quantizers should be capable of
extracting multiple i.i.d. bits. Furthermore, after every feature pair is quantized
into a prescribed number of bits, the concatenated binary strings should result in
good recognition performance, when applied to a Hamming distance classifier (HDC).

CONTENTS. In this chapter, we propose quantizing the phase and the magnitude
of pairwise features in polar coordinates. As shown in Fig. 6.1, the phase and the
magnitude quantization are applied mutually exclusively, and for each a strategy is
designed to compose the feature pairs. Given a feature pair, both the phase and
the magnitude quantizers are user-independent. Thus, the quantization intervals
are merely determined by equally dividing the probability mass of the background
probability density function (PDF), in the phase or the magnitude domain. The
Gray codes, with only one single bit Hamming distance between any two adjacent
codewords, are then assigned to the quantization intervals. This reduces the number

95
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of erroneous bits due to the intra-class variation. Since the quantization intervals
have equal background probability, the bits assigned to each feature pair are i.i.d..
Moreover, if the biometric features are statistically independent, the composed feature
pairs are independent as well, the bits in the entire binary string are then i.i.d..

Furthermore, quantizing two-dimensional features allows user-dependent config-
uration of the feature pairs, which can further optimize the overall recognition per-
formances of the binary strings. We present this procedure in two steps. First, the
optimization problem is formulated as follow: We know that the performance of a
HDC depends on how a Hamming distance threshold could separate two densities:
the genuine Hamming distance (GHD) density and the imposter Hamming distance
(IHD) density. Therefore, optimizing the performance of a HDC is equivalent to
optimizing the ratio between their intra- and inter-class scatters. Although it is not
feasible to find an analytical pairing solution for this problem, we find that the problem
can be approximated as an optimization of the overall distance between the feature
pairs and the origin, each for phase and magnitude. In the second step, to solve this
simplified problem, we develop two heuristic pairing strategies: A long-short (LS)
pairing strategy, which combines feature pairs with a large mean and a small mean,
is designed for phase. Alternatively, a long-long (LL) pairing strategy, which selects
features that either both have large means or both have small means, is designed for
magnitude. The pairing is applied to every enrolled user. As a result, the pairing
configurations are user-dependent. Figure 6.2 shows the contribution of this chapter
in the context of the thesis.

PUBLICATION(S). The content of Section 6.2 has been published in [57].

6.2 Binary biometric representation through pair-

wise polar quantization

Abstract

Binary biometric representations have great significance for data compression and
template protection. In this paper, we introduce pairwise polar quantization. Further-
more, aiming to optimize the discrimination between the genuine Hamming distance
(GHD) and the imposter Hamming distance (IHD), we propose two feature pairing
strategies: the long-short (LS) strategy for phase quantization, as well as the long-
long (LL) strategy for magnitude quantization. Experimental results for the FRGC
face database and the FVC2000 fingerprint database show that phase bits provide
reasonably good performance, whereas magnitude bits obtain poor performance.

6.2.1 Introduction

Binary biometric representations have great significance for data compression and
template protection [4]. A common way to extract binary strings is by quantizing
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Figure 6.1: Block diagram of the two-dimensional polar quantization: (a) the magnitude
quantization with LL pairing strategy and (b) the phase quantization with LS pairing strategy.
The vi, i = 1 . . . D denote D independent biometric features, which are composed into K
feature pairs. The ci, i = 1 . . .K indicates the configuration for the ith feature pair. Since bit
allocation (in gray) is not in scope of this chapter, every feature is prescribe to a fixed length
of b-bit. The quantized bits si, i = 1 . . .K from all K feature pairs are then concatenated into
the binary string s.
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Figure 6.2: Block diagram of the main contributions, highlighted in chapter 6.

and coding the real-valued biometric templates. The binary string has to suffice the
following two requirements:

1. To obtain a verification performance with low false acceptance rate (FAR) and
false rejection rate (FRR), the binary strings are desired to be not only discrim-
inative, but also robust to intra-class variation;

2. Considering template protection, the bits generated by the imposters should
be independent and identically distributed, in order to maximize the efforts of
guessing the genuine template.

To achieve the requirements, many work focus on designing one-dimensional quan-
tizers, relying on the feature’s statistical properties, e.g. the genuine user probabil-
ity density function (PDF) pg and the background PDF pb [8], [46], [9], [22], [23],
[39]. Among them the fixed quantizer [22], [23] is global, constructed merely from the
background PDF, whereas quantizers in [8], [46], [9], [39] are user-specific, constructed
from both the genuine user PDF and the background PDF. Quantizers in [8], [46] and
[9] have equal-width-intervals. Alternatively, quantizers in [22], [23], [39] have equal-
probability-intervals. Furthermore, independent of the one-dimensional qantizers, the
DROBA principle [56] was proposed to assign various numbers of quantization bits to
every feature. In this paper we concentrate on the quantizer design. Although one-
dimensional quantizers yield reasonably good performances, quantizing every feature
independently ends up with inflexible quantization intervals, for instance, orthogonal
boundaries in the two-dimensional feature space. Therefore, two-dimensional quanti-
zation might bring more flexible quantizer structures.
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In this paper, we propose quantization in polar coordinates, including phase and
magnitude. Unlike in audio and image coding [58], where polar quantization is di-
rectly applied on predetermined complex variables, quantizing biometric features al-
lows freedom to compose the pairwise features. Furthermore, we define a measure
of the discrimination between the quantized bits, by computing the inter-class and
intra-class scatters between the genuine and the imposter Hamming distances. To
optimize such discrimination, we develop the long-short (LS) and the long-long (LL)
pairing strategies for phase and magnitude, respectively.

In Section 6.2.2 the polar quantization is introduced. In Section 6.2.3 we propose
the long-short and the long-long pairing strategies, to optimize the discrimination
between the genuine and the imposter Hamming distances. In Section 6.2.4, some ex-
perimental results are given for the FRGC face database and the FVC2000 fingerprint
database, and conclusions are drawn in Section 6.2.5.

6.2.2 Polar quantization

Let v = {v1, v2} denote a two-dimensional feature vector. In polar coordinates, the
phase θ and magnitude r are:

θ = angle(v1, v2) , (6.1)

r =
√
v21 + v22 , (6.2)

where θ is the counterclockwise angle from the v1-axis, and r is the radial distance from
the origin. We assume that biometric features have circularly symmetric background
PDF, feasible for polar quantization. A n-bit phase quantizer is then constructed as:

ξ =
2π

2n
, (6.3)

Qθ,i = [(i− 1)ξ iξ), i = 1, . . . 2n , (6.4)

where Qθ,i represents the ith quantization interval within boundaries [(i − 1)ξ iξ).
When the background PDF is circularly symmetric, θ is uniformly distributed, leading
to both equal-ξ-width and equal-2−n-probability intervals.

A n-bit magnitude quantizer is constructed as:

B0 = 0 , (6.5)

Bi = argB

[ ∫ B

Bi−1

∫ 2π

0

pb(θ, r)dθdr = 2−n

]
, i = 1, . . . 2n , (6.6)

Qr,i = [Bi−1 Bi), i = 1, . . . 2n , (6.7)

where Qr,i represents the ith quantization interval within boundaries [Bi−1 Bi).
Determining these intervals depends on the background PDF pb. The expression in
(6.6) ensures equal-2−n-probability intervals.

To summarize, both phase and magnitude quantization obtain equal background
probability intervals. Thus, the imposters obtain independent and identically dis-
tributed bits.
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6.2.3 Feature pairing

6.2.3.1 Hamming Distance Discriminant Analysis

Often, binary biometric strings are matched via their Hamming distances. To de-
sign a verification system, a genuine Hamming distance (GHD) is computed when
the query and the target share the same identity, otherwise an imposter Hamming
distance (IHD) is computed. The decision is then made by applying a threshold T
to both distances, as illustrated in Fig. 6.3. In this paper, we aim to optimize the
discrimination between the GHD and IHD densities.

Hamming distance

P
ro

b
a

b
ility

GHD Dù

IHD   Dù

Dù DùT

Figure 6.3: The genuine Hamming distance (GHD) density and the imposter Hamming
distance (IHD) density in a biometric verification system.

We begin by defining the discrimination between GHD and IHD. Suppose we have
P feature pairs. Each pair is quantized as a code xi, i = 1, . . . , P , and subsequently
concatenated into the binary string X = x1, . . . , xP . Considering a genuine user ω,
with X̂ω = x̂

ω,1
, . . . , x̂

ω,P
as the enrollment template. Let dω,i and dω̄,i be the GHD

and IHD for the ith feature pair, defined as:

dω,i = h(xi, x̂ω,i), xi ∈ user ω ; (6.8)

dω̄,i = h(xi, x̂ω,i), xi /∈ user ω , (6.9)

where function h computes the Hamming distance between the two inputs. Then the
GHD (Dω) and the IHD (Dω̄) for the entire binary string are:

Dω =

P∑

i=1

dω,i ; (6.10)

Dω̄ =
P∑

i=1

dω̄,i . (6.11)

Furthermore, for the ith feature pair, we define the expectation of the GHD (d̄ω,i)
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and the IHD (d̄ω̄,i) as:

d̄ω,i = E [dω,i], xi ∈ user ω ; (6.12)

d̄ω̄,i = E [dω̄,i], xi /∈ user ω . (6.13)

Thus, for the entire binary string, the expectation of the GHD (Dω) and the IHD
(Dω̄) become:

Dω =
P∑

i=1

d̄ω,i ; (6.14)

Dω̄ =

P∑

i=1

d̄ω̄,i . (6.15)

A measure of separation between GHD and IHD densities is their intra-class scatter
and the inter-class scatter. Thus, we would like to minimize the intra-class scatter
Sintra,ω, defined as:

Sintra,ω = E [(Dω −Dω)
2] + E [(Dω̄ −Dω̄)

2] . (6.16)

In the mean time, we want to maximize the inter-class scatter Sinter,ω:

Sinter,ω = (Dω̄ −Dω)
2 . (6.17)

Substituting (6.10), (6.11), (6.14), (6.15) into (6.16) and (6.17), we have:

Sintra,ω = E

[[ P∑

i=1

(d
ω,i

− d̄
ω,i

)
]2
]
+ E

[[ P∑

i=1

(dω̄,i − d̄ω̄,i)
]2
]
;

Sinter,ω =
[ P∑

i=1

(d̄ω̄,i − d̄
ω,i

)
]2

.

Assuming that the P feature pairs are independent, Sintra,ω and Sinter,ω can be ap-
proximated as:

Sintra,ω =
P∑

i=1

[
E
[
(d

ω,i
− d̄

ω,i
)2
]
+ E

[
(dω̄,i − d̄ω̄,i)

2
]]

=
P∑

i=1

Sintra,ω,i ; (6.18)

Sinter,ω =

P∑

i=1

(d̄ω̄,i − d̄
ω,i

)2 =

P∑

i=1

Sinter,ω,i . (6.19)

Hence, the intra-/inter-class scatter for the entire binary string is simplified as the sum
of the intra-/inter-class scatter over all the feature pairs. Usually biometric features
are not presented in pairs, allowing the freedom to compose the pairwise features to
optimize Sintra,ω and Sinter,ω. Therefore, we formulate the problem as: for a genuine
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user ω, to find a pairing configuration {C∗
ω,i}, i = 1, . . . , P , so that the discrimination

between GHD and IHD is maximized:

{C∗
ω,i} = arg max

{Cω,i}

Sinter,ω

Sintra,ω
, (6.20)

= arg max
{Cω,i}

∑P
i=1 Sinter,ω,i∑P
i=1 Sintra,ω,i

. (6.21)

6.2.3.2 Pairing solutions

In order to optimize (6.21), we first have to analyze how the genuine user PDF relates
to Sinter,ω,i and Sintra,ω,i in case of the polar quantization. Afterwards, we could
decide a strategy to pair features with specific pg to optimize Sinter,ω,i and Sintra,ω,i.
However, it is difficult to analytically find an expression for the relation, due to lack of
samples and complex integral calculation in polar coordinates. Therefore, we employ
an empirical method to simplify the relation of Sinter,ω,i, Sintra,ω,i and the genuine user
PDF. We take two data sets: FRGC(version 1) [37] face database and FVC2000(DB2)
fingerprint database [35].

• FRGC: It contains 275 users with various numbers of images, taken under both
controlled and uncontrolled conditions. A set of standard landmarks, i.e. eyes,
nose and mouth, are used to align the faces. The raw measurements are the
gray pixel values, leading to a total of 8762 elements.

• FVC2000: It contains 8 images of 110 different users. Images are aligned
according to a standard core point position. The raw measurements contain
two categories: the squared directional field in both x and y directions, and the
Gabor response in 4 orientations (0, π/4, π/2, 3π/4). Determined by a regular
grid of 16 by 16 points with spacing of 8 pixels, measurements are taken at 256
positions, leading to a total of 1536 elements [22].

We first apply PCA/LDA [42] to reduce both data sets into 50 features. Afterwards,
for every genuine user, we randomly pair the features into 25 pairs. Following this
pairing configuration, the entire data set, including the genuine user samples and
the imposter samples are quantized via a 1-bit phase quantizer and a 1-bit magni-
tude quantizer, where the magnitude quantizer boundary is determined by a two-
dimensional Gaussian density with zero mean and unit variance pb(v) = N(v, 0, 1).
The Sinter,ω,i and Sintra,ω,i for every feature pair is then computed based on the quan-
tized bits. We repeat this process for all the genuine users in the data set. Eventually,
we average Sinter,ω,i and Sintra,ω,i over all features as well as all genuine users, so that
the averaged Sinter,ω,i and Sintra,ω,i are neither user nor feature biased. Intuitively, we
speculate that the distance rω,i, – distance between the feature pair mean and the ori-
gin – dominates the inter- and intra-class scatter. To analyze, in Fig. 6.4, we plot the
value of Sinter,ω,i, Sintra,ω,i as sorted by rω,i, for both phase bits and magnitude bits.
Both data sets reveal the same relations: Fig. 6.4(a) suggests that for phase quanti-
zation, when rω,i increases, the inter-class scatter increases and the intra-class scatter
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Figure 6.4: The averaged Sinter,ω,i and Sintra,ω,i for (a) phase and (b) magnitude, as sorted
by rω,i.

decreases; Fig. 6.4(b) suggests that for magnitude quantization, when the distance
| rω,i − B | between the feature pair mean and the magnitude boundary increases,
the inter-class scatter increases and the intra-class scatter decreases. Therefore, we
simplify the problem (6.21) as:

{C∗
ω,i} = arg max

{Cω,i}

P∑

i=1

rω,i, for phase , (6.22)

{C∗
ω,i} = arg max

{Cω,i}

P∑

i=1

| rω,i −B |, for magnitude . (6.23)

Optimizing the inter- and intra-class scatter is now simplified as optimizing the overall
distance of the feature pairs. To solve (6.22) and (6.23), the straightforward way is
to conduct a brute force search of all possible pairing configurations and pick the one
with the maximum overall distance. Unfortunately, the computational complexity is
too high. Therefore, we propose the following two heuristic pairing strategies: Given
2P features, we first sort the mean of the 2P features {abs(µk)}, k = 1, . . . , 2P from
the smallest to the largest into a sequence of ordered feature indexes {I1, I2, . . . , I2P }.

1. long-short (LS) strategy: The index of the ith feature pair is:

C∗
ω,i = (Ii, I2P+1−i), i = 1, . . . , P ; (6.24)

2. long-long (LL) strategy: The index of the ith feature pair is:

C∗
ω,i = (I2×i−1, I2×i), i = 1, . . . , P . (6.25)

Apparently, the long-short strategy selects features with a large mean and a small
mean as a pair, keeping their distance rω,i large; thus, somehow maximizes the over-
all distances in (6.22) for phase quantization. Contrarily, long-long strategy selects
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features that either both have large means or both have small means, keeping their
distance rω,i far away from the boundary; thus, maximizes the overall distances in
(6.23) for magnitude quantization. The advantage of these two pairing strategies is
that the computational complexity is low O(P ).

6.2.4 Experiments

We tested the polar quantization on the FRGC and the FVC2000 database, as
described in Section 6.2.3. To first reduce the feature dimensionality, we applied
PCA/LDA [42] on a training set, consisting of independent users from the enroll-
ment and verification. The obtained transformation was then applied to both the
enrollment and verification samples. In the enrollment, for every target user, as-
signed with Gray codes, the phase bits (phase+LS) were generated following the LS
pairing strategy, while the magnitude bits (magnitude+LL) were generated following
LL pairing strategy. By concatenating both the phase and the magnitude bits we
obtained the total polar bits (polar+combined). The quantized codes, together with
the pairing configuration {C∗

ω,i}, was stored for each target user. During the verifica-
tion, features of the query user were quantized according to the {C∗

ω,i} of the claimed
identity, resulting in a query binary string. Eventually the verification performance
was evaluated by a Hamming distance classifier. With, in total, n samples per user
(n = 8 for FVC2000, and n ranges from 6 to 48 for FRGC), the division of the data
is indicated in Table 6.1.

Table 6.1: Training, enrollment and verification data (number of users×number of samples
per user) and the number of partitionings for FRGC and FVC2000.

Training Enrollment Verification Partitionings
FRGC 210× n 65× 2n/3 65× n/3 5
FVC2000 80× n 30× 3n/4 30× n/4 20

Since both the phase and the magnitude have fixed equal-probability-intervals,
we compared their performances with the one-dimensional fixed quantizer (1D fixed)
[22], [23], which has the same property. We first investigated the 1-bit quantization
(nθ = nr = nf = 1) performances of phase+LS, magnitude+LL and polar+combined.
The EER results for the FRGC and the FVC2000 at various feature dimensions are
shown in Fig. 6.5. In general, the magnitude bits give poor performances, whereas
the phase bits consistently yield good performances and outperform 1D fixed quan-
tization. Furthermore, since the magnitude bits are so poor, combining both phase
and magnitude bits, as seen with polar+combined, does not show good performance.

In Fig. 6.6 we further illustrate the GHD and IHD densities of the phase and
the magnitude bits, at P = 60 for FRGC, as compared to the 1D fixed quantization.
We observe that for the three types of bits, the mean of their IHD densities are all
around 0.5, demonstrating the equal-probability-intervals. The IHD density of the 1D
fixed quantizer is relatively narrow, compared to those of the phase and magnitude.
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Figure 6.5: The EER performances of phase+LS, magnitude+LL and polar+combined, as
compared to the 1D fixed quantization, for (a) FRGC and (b) FVC2000.

Additionally, the GHD density of the phase bits are located farther away from the
IHD. Unfortunately, the GHD densities of the three types of bits are all quite wide.

The discrimination property explained above can be quantified as the inter- and
intra-class scatter. Some examples computed on the fractional Hamming distances
are given in Table 6.2. Consistent to what we observed in Fig. 6.6, for phase+LS,
the Sinter is on average two times the 1D fixed. In the mean time, its Sintra does
not increase much. For this reason, phase+LS yields better performance. On the
other hand, magnitude+LL obtains smaller Sinter and larger Sintra, leading to poor
performance. Based on these analysis, we could conclude that even with carefully
paired features, the magnitude does not provide discriminative bits for classification.
Contrarily, the phase provides reasonably discriminative bits for classification.

In fact, the 1-bit phase quantizer, with boundary at π, quantizes only the feature
that has a larger mean in the pairs, leaving the other feature discarded. Thus it also
acts as a feature selection procedure. Now we test the phase quantizer with more
quantization bits at nθ = 1, 2, 3, 4, compared to the 1D fixed quantizer at nf = 1, 2.
Their EER results for the FRGC and the FVC2000 are shown in Fig. 6.7. Note
that when nθ = 2, in the two-dimensional feature space, the phase quantizer has
the same orthogonal boundaries as the 1D fixed quantizer at nf = 1, leading to the
same performances. Results show that at a given feature dimensionality, phase bits at
nθ = 1 always give the best performances, while nθ = 2, 3 also yield reasonably good
performances. Unfortunately, when nθ = 4, the performances turn poor. Generally,
compared to the 1D fixed quantizer, the phase quantizer gives better performances
at a lower bit length.

To summarize, although the magnitude rω,i itself does not provide discriminative
bits, it in fact facilitates generating better phase bits. Additionally, the phase quan-
tization has the following properties: (1) The LS pairing strategy is universal and
simple, without modeling the specific genuine feature PDF; (2) The phase quantizer
boundaries are not necessarily orthogonal, allowing correlations between the two fea-
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Figure 6.6: The GHD and the IHD densities of phase+LS, magnitude+LL, and the 1D
fixed quantization, at 2P = 120 for FRGC.

Table 6.2: The inter-class and intra-class scatter of phase+LS, magnitude+LL and the 1D
fixed, for (a-b) FRGC and (c-d) FVC2000.

FRGC 2P=50
1D fixed phase+LS magnitude+LL

Sinter (×10−2) 7.2 14.9 4.4
Sintra (×10−2) 1.3 2.0 2.7

(a)

FRGC 2P=120
1D fixed phase+LS magnitude+LL

Sinter (×10−2) 5.2 11.5 2.3
Sintra (×10−2) 0.8 1.4 2.0

(b)

FVC2000 2P=50
1D fixed phase+LS magnitude+LL

Sinter (×10−2) 7.2 14.6 4.3
Sintra (×10−2) 1.2 2.1 2.8

(c)

FVC2000 2P=78
1D fixed phase+LS magnitude+LL

Sinter (×10−2) 6.7 13.5 3.7
Sintra (×10−2) 1.0 1.6 2.2

(d)
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Figure 6.7: The EER performances of phase+LS and 1D fixed quantization at various
feature dimensionalities with various quantization bits , for (a) FRGC and (b) FVC2000.

tures. Furthermore, the phase is uniformly distributed as long as the background
PDF is circularly symmetric, which easily fits many feature modalities.

6.2.5 Conclusions

In this paper, we propose extracting binary biometric bits through polar quantization.
In addition to the polar quantizer structure, quantizing features in pairs allows feature
pair configuration. Therefore, we propose the long-long and the long-short pairing
strategies to optimize the discrimination between the genuine Hamming distance and
the imposter Hamming distance. Experimental results on the FVC2000 and the
FRGC database show that magnitude yields poor classification performances, whereas
phase provides reasonably good performances.

6.3 Chapter conclusion

In this chapter, we present a pairwise polar quantization, including the phase and
the magnitude. Furthermore, aiming to optimize the discrimination between the IHD
and the GHD densities, LL and LS pairing strategies are designed for the magnitude
and the phase quantization, respectively. Regarding the research objectives, both
quantizers extract multiple i.i.d. bits. Compared to the one-dimensional quantiz-
ers, two-dimensional quantizers may construct less error-prone quantization intervals.
Although both quantizers are theoretically reasonable, the experiments on the real
data show that the magnitude quantization combined with LL pairing fails, while
the phase quantizer combined with LS pairing gives better recognition performance.
With more reliable bits extracted from the user-dependent feature pairs, the length
of the random key K can be increased.
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7
Two-dimensional Adaptive Phase Quantizer

7.1 Chapter introduction

PURPOSE. In Chapter 6, a user-independent pairwise phase quantizer is proposed.
Moreover, a long-short (LS) pairing strategy that selects feature pairs each with
a large mean and a small mean showed a promising recognition performance for
phase quantization. However, the intervals of this phase quantizer are determined
merely by the background probability density function (PDF) of the paired features.
Thus, without considering the genuine user PDF, the FAR and FRR performances
are not optimal. Therefore, the purpose of this chapter is to adapt the phase
quantization intervals to obtain better recognition performances. The new phase
quantizer should be capable of extracting multiple statistically independent and
identically distributed (i.i.d.) bits. Furthermore, after every feature pair is quantized
into a prescribed number of bits, the concatenated binary strings should result in
good recognition performance, when applied to a Hamming distance classifier (HDC).

CONTENTS. In this chapter, we propose a user-dependent adaptive phase quantizer
(APQ) with an improved LS pairing strategy, as illustrated in Fig. 7.1. For every fea-
ture pair of an enrolled user, given a uniform background PDF in the phase domain,
equal-width quantization intervals also gives equal background probability mass. The
APQ then adjusts the phase quantization intervals with an offset, according to the
genuine user PDF and the background PDF of the feature pair, so that the theoretical
detection rate at Hamming distance zero is maximized. However, in practice, comput-
ing the offset based on the two PDFs is difficult. Therefore, later in this chapter, we
propose a simplified APQ, in which the offset is computed based on the phase of the
feature pair’s mean. We show that without loosing much performance, the simplified

109
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APQ can be a good approximation of APQ. The Gray codes, with only one single
bit Hamming distance between any two adjacent codewords, are then assigned to the
quantization intervals. This reduces the number of erroneous bits due to the intra-
class variation. Since the quantization intervals have equal background probability,
the bits assigned to each feature pair are i.i.d.. Moreover, if the biometric features
are statistically independent, the composed feature pairs are independent as well, the
bits in the entire binary string are then i.i.d..

To compose feature pairs for APQ, we apply a heuristic long-short (LS) pairing
strategy, which composes feature pairs each with a large with a large mean and a small
mean, based on the Mahalanobis distance. The pairing is applied to every enrolled
user, which makes it user-dependent. The LS pairing proposed in this chapter is in
fact similar to the LS pairing in Chapter 6, where the Euclidian distances are used.

Theoretically a bit allocation principle can be applied after LS pairing and APQ.
However, since the LS pairing strategy already optimizes the overal binary string
performances. There is not much room for improvement to apply the bit allocation.
This has been shown in the paper, by comparing LS+APQ with one-dimensional
quantizer FQ+DROBA. Therefore, in this chapter, every feature is prescribe to a
fixed length of b-bit. Figure 7.2 shows the contribution of this chapter in the context
of the thesis.

PUBLICATION(S). The content of Section 7.2 has been published in [59].
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Figure 7.1: Block diagram of the two-dimensional APQ with LS pairing strategy. The
vi, i = 1 . . . D denote D independent biometric features, which are composed into K feature
pairs. The ci, i = 1 . . .K indicates the configuration for the ith feature pair. The quantized
bits si, i = 1 . . .K from all K feature pairs are then concatenated into the binary string s.
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Figure 7.2: Block diagram of the main contributions, highlighted in chapter 7.

7.2 Binary biometric representation through pair-

wise adaptive phase quantization

Abstract

Extracting binary strings from real-valued biometric templates is a fundamental step
in template compression and protection systems, such as fuzzy commitment, fuzzy
extractor, secure sketch and helper data systems. Quantization and coding is the
straightforward way to extract binary representations from arbitrary real-valued bio-
metric modalities. In this paper, we propose a pairwise adaptive phase quantization
(APQ) method, together with a long-short (LS) pairing strategy, which aims to maxi-
mize the overall detection rate. Experimental results on the FVC2000 fingerprint and
the FRGC face database show reasonably good verification performances.

7.2.1 Introduction

Extracting binary biometric strings is a fundamental step in template compression and
protection [4]. It is well-known that biometric information is unique, yet inevitably
noisy, leading to intra-class variations. Therefore, the binary strings are desired to
be not only discriminative, but also have low intra-class variations. Such require-
ments translate to both low false acceptance rate (FAR) and low false rejection rate
(FRR). Additionally, from the template protection perspective, we know that gen-
eral biometric information is always public, thus any person has some knowledge of
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the distribution of biometric features. Furthermore, the biometric bits in the binary
string should be independent and identically distributed (i.i.d.), in order to maximize
the attacker’s efforts in guessing the target template.

Several biometric template protection concepts have been published. Cancelable
biometrics [19], [20] distort the image of a face or a fingerprint by using a one-way
geometric distortion function. The fuzzy vault method [32], [33] is a cryptographic
construction allowing to store a secret in a vault that can be locked using an possibly
unordered set of features, e.g. fingerprint minutiae. A third group of techniques,
containing fuzzy commitment [21], fuzzy extractor [11], secure sketch [26] and helper
data system [24], [22], [23], [25], [15], derive a binary string from a biometric measure-
ment and store an irreversibly hashed version of the string with or without binding a
crypto key. In this paper, we adopt the third group of techniques.

The straightforward way to extract binary strings is quantization and coding of
the real-valued features. So far, many works [24], [22], [23], [8], [46], [9], [39], [56],
[45], [51] have adopted the bit extraction framework shown in Fig. 7.3, involving two
tasks: (1) designing a one-dimensional quantizer and (2) determining the number of
quantization bits for every feature. The final binary string is then the concatenation
of the output bits from all the individual features.

Figure 7.3: The bit extraction framework based on the one-dimensional quantization and
coding, where D denotes the number of features; bi denotes the number of quantization bits
for the ith feature (i = 1, . . . , D), and si denotes the output bits. The final binary string is
s = s1s2 . . . sD.

Designing a one-dimensional quantizer relies on two probability density functions
(PDFs): the background PDF and the genuine user PDF, representing the proba-
bility density of the entire population and the genuine user, respectively. Based on
the two PDFs, quantization intervals are determined to maximize the detection rate,
subject to a given FAR, according to the Neyman-Pearson criterion. So far, a number
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of one-dimensional quantizers have been proposed [24], [22], [23], [8], [46], [9], [39],
as categorized in Table 7.1. Quantizers in [24], [22], [23] are user-independent, con-
structed merely from the background PDF, whereas quantizers in [8], [46], [9], [39]
are user-specific, constructed from both the genuine user PDF and the background
PDF. Theoretically, user-specific quantizers provide better verification performances.
Particularly, the likelihood-ratio based quantizer [39], among all the quantizers, is
optimal in the Neyman-Pearson sense. Quantizers in [24], [8], [46] and [9] have equal-
width intervals. Unfortunately, this leads to potential threats: Features obtain higher
probabilities in certain quantization intervals than in others, and thus attackers can
easily find the genuine interval by continuously guessing the one with the highest prob-
ability. To avoid this problem, quantizers in [22], [23] and [39] have equal-probability
intervals, ensuring i.i.d. bits.

Table 7.1: The categorized one-dimensional quantizers.

user-independent user-specific
Linnartz et al. [24] Vielhauer et al. [8]

Tuyls et al. [22] Hao and Wah [46]
Kevenaar et al. [23] Chang et al. [9]

Chen et al. [39]

equal-width equal-probability
Linnartz et al. [24] Tuyls et al. [22]
Vielhauer et al. [8] Kevenaar et al. [23]
Hao and Wah [46] Chen et al. [39]

Chang et al. [9]

Apart from the one-dimensional quantizer design, some papers focus on assigning
a varying number of quantization bits to each feature. So far, several bit alloca-
tion principles have been proposed: Fixed bit allocation (FBA) [22], [23], [39] simply
assigns a fixed number of bits to each feature. On the contrary, the detection rate op-
timized bit allocation (DROBA) [45] and the area under the FRR curve optimized bit
allocation (AUF-OBA) [51], assign a variable number of bits to each feature, accord-
ing to the features’ distinctiveness. Generally, AUF-OBA and DROBA outperform
FBA.

In this paper, we deal with quantizer design rather than assigning the quanti-
zation bits to features. Although one-dimensional quantizers yield reasonably good
performances, a problem remains: Independency between all feature dimensions is
usually difficult to achieve. Furthermore, one-dimensional quantization leads to in-
flexible quantization intervals, for instance, the orthogonal boundaries in the two-
dimensional feature space, as illustrated in Fig. 7.4a. Contrarily, two-dimensional
quantizers, with an extra degree of freedom, bring more flexible quantizer structures.
Therefore, a user-independent pairwise polar quantization was proposed in [57]. The
polar quantizer is illustrated in Fig. 7.4b, where both the magnitude and the phase
intervals are determined merely by the background PDF. In principle, polar quantiza-
tion is less prone to outliers and less strict on independency of the features, when the
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genuine user PDF is located far from the origin. Therefore, in [57], two pairing strate-
gies, the long-long and the long-short pairing, were proposed for the magnitude and
the phase, respectively. Both pairing strategies use the Euclidean distances between
each feature’s mean and the origin. Results showed that the magnitude yields a poor
verification performance, whereas the phase yields a good performance. The two-
dimensional quantization based bit extraction framework, including an extra feature
pairing step, is illustrated in Fig. 7.5.

Figure 7.4: The two-dimensional illustration of (a) the one-dimensional quantizer bound-
aries (dash line) and (b) the user-independent polar quantization boundaries (dash line). The
genuine user PDF is in red and the background PDF is in blue. The detection rate and the
FAR are the integral of both PDFs in the pink area.

Since the phase quantization has shown in [57] to yield a good performance, in
this paper, we propose a user-specific adaptive phase quantizer (APQ). Furthermore,
we introduce a Mahalanobis distance based long-short (LS) pairing strategy that by
good approximation maximizes the theoretical overall detection rate at zero Hamming
distance threshold.

In Section 7.2.2 we introduce the adaptive phase quantizer (APQ), with simula-
tions in a particular case with independent Gaussian densities. In Section 7.2.3 the
long-short (LS) pairing strategy is introduced to compose pairwise features. In Section
7.2.4, we give some experimental results on the FVC2000 fingerprint database and
the FRGC face database. In Section 7.2.5 the results are discussed and conclusions
are drawn in Section 7.2.6.

7.2.2 Adaptive Phase Quantizer (APQ)

In this section, we first introduce the APQ. Afterwards, we discuss its performance
in a particular case where the feature pairs have independent Gaussian densities.
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Figure 7.5: The bits extraction framework based on two-dimensional quantization and cod-
ing, where D denotes the number of features; K denotes the number of feature pairs; ck
denotes the feature index for the kth feature pair (k = 1, . . . ,K) and si denotes the corre-
sponding quantized bits. The final output binary string is S = s1s2 . . . sK.

7.3.2.1 Adaptive Phase Quantizer (APQ)

The adaptive phase quantization can be applied to a two-dimensional feature vector
if its background PDF is circularly symmetric about the origin. Let v = {v1, v2}
denote a two-dimensional feature vector. The phase θ = angle(v1, v2), ranging from
[0, 2π), is defined as its counterclockwise angle from the v1-axis. For a genuine user
ω, a b-bit APQ is then constructed as:

ξ =
2π

2b
, (7.1)

Qω,j =

(
ϕ∗
ω + (j − 1)ξ mod 2π, ϕ∗

ω + jξ mod 2π

]
,

j = 1, . . . , 2b , (7.2)

where Qω,j represents the jth quantization interval, determined by the quantization
step ξ and an offset angle ϕ∗

ω . Every quantization interval is uniquely encoded using
b bits. Let µω be the mean of the genuine feature vector v, then among the intervals,
the genuine interval Qω,genuine, which is assigned for the genuine user ω, is referred
to as:

Qω,j = Qω,genuine ⇐⇒ µω ∈ Qω,j , (7.3)

that is, Qω,genuine is the interval where the mean µω is located. In Fig. 7.6 we give
an illustration of a b-bit APQ.

The adaptive offset ϕ∗
ω in (7.2) is determined by the background PDF pω̄(v) as

well as the genuine user PDF pω(v): Given both PDFs and an arbitrary offset ϕ, the
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0
2πφω* ξ

•  •  •Qω,1 Qω,2 Qω,1

Figure 7.6: An illustration of a b-bit APQ in the phase domain, where Qω,j, j = 1, . . . , 2b

denotes the jth quantization interval with width ξ, and offset angle ϕ∗

ω. The first interval
Qω,1 is wrapped.

theoretical detection rate δ and the FAR α at zero Hamming distance threshold are:

δω(Qω,genuine) =

∫

Qω,genuine(b,ϕ)

pω(v)dv , (7.4)

αω(Qω,genuine) =

∫

Qω,genuine(b,ϕ)

pω̄(v)dv . (7.5)

Given that the background PDF is circularly symmetric, (7.5) is independent of ϕ.
Thus, (7.5) becomes:

αω = 2−b . (7.6)

Therefore, the optimal ϕ∗
ω is determined by maximizing the detection rate in (7.4):

ϕ∗
ω = argmax

ϕ
δω . (7.7)

After the ϕ∗
ω is determined, the quantization intervals are constructed from (7.2).

Additionally, the detection rate of the APQ is

δω(Qω,genuine) =

∫

Qω,genuine(b,ϕ∗

ω)

pω(v)dv . (7.8)

Essentially, APQ has both equal-width and equal-probability intervals, with rota-
tion offset ϕ∗

ω that maximizes the detection rate.

7.3.2.2 Simulations on Independent Gaussian Densities

We investigate the APQ performances on synthetic data, in a particular case where
the feature pairs have independent Gaussian densities. That is, the background
PDF of both features are normalized as zero-mean and unit-variance, i.e. pω̄,1 =
pω̄,2 = N(v, 0, 1). Similarly, the genuine user PDFs are pω,1(v) = N(v, µω,1, σω,1)
and pω,2(v) = N(v, µω,2, σω,2). Since the two features are independent, the two-
dimensional joint background PDF pω̄(v) and the joint genuine user PDF pω(v) are:

pω̄(v) = pω̄,1 · pω̄,2 , (7.9)

pω(v) = pω,1 · pω,2 . (7.10)

According to (7.6), the FAR for a b-bit APQ is fixed to 2−b. Therefore, we only
have to investigate the detection rate in (7.8) regarding the genuine user PDF pω,
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defined by the µ and σ values. In Fig. 7.7, we show the detection rate δω of the b-bit
APQ (b = 1, 2, 3, 4), when pω(v) is modeled as σω,1 = σω,2 = 0.2; σω,1 = σω,2 = 0.8;
σω,1 = 0.8, σω,2 = 0.2, at various {µω,1, µω,2} locations for optimal ϕ∗

ω. The white
pixels represent high values of the detection rate whilst the black pixels represent low
values. The δω appears to depend more on how far the features are from the origin
than on the direction of the features. This is due to the rotation adaptive property.
In general, the δω is higher when the genuine user PDF has smaller σω and larger
µω for both features. Either decreasing the µω or increasing the σω deteriorates the
performance.

To generalize such property, we define a Mahalanobis distance dω,i for feature i
as:

dω,i = abs(µω,i/σω,i) . (7.11)

Given the Mahalanobis distances dω,1, dω,2 of two features, we define d̄ω for this
feature pair as:

d̄ω =
√
d2ω,1 + d2ω,2 . (7.12)

In Fig. 7.8 we give some simulation results for the relation between d̄ω and δω. The
parameters µ and σ for the genuine user PDF pω are modeled as four σ combinations
at various µ locations. For every µ-σ setting, we plot its d̄ω and δω. We observe that
the detection rate δω tends to increase when the feature pair Mahalanobis distance
d̄ω increases, although not always monotonically.

We further compare the detection rate of APQ to that of the one-dimensional fixed
quantizer (FQ) [39]. In order to compare with the 2-bit APQ at the same FAR, we
choose a 1-bit FQ (b = 1) for every feature dimension. In Fig. 7.9 we show the ratio
of their detection rates (δAPQ/δFQ) at various µ-σ values. The white pixels represent
high values whilst the black pixels represent low values. It is observed that APQ
consistently outperforms FQ, especially when the mean of the genuine user PDF is
located far away from the origin and close to the FQ boundary, namely the v1-axis
and v2-axis. In fact, the two 1-bit FQ works as a special case of the 2-bit APQ, with
ϕ∗
ω = 0.

7.2.3 Biometric Binary String Extraction

The APQ can be directly applied to two-dimensional features, such as Iris [53], while
for arbitrary features, we have the freedom to pair the features. In this section, we
first formulate the pairing problem, which in practice is difficult to solve. Therefore,
we simplify this problem and then propose a long-short pairing strategy (LS) with
low computational complexity.

7.3.3.1 Problem Formulation

The aim for extracting biometric binary string is: for a genuine user ω who has D fea-
tures, we need to determine a strategy to pair these D features into D/2 pairs, in such
way that the entire L-bit binary string (L = b ×D/2) obtains optimal classification
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Figure 7.7: The detection rate of the b-bit APQ (b = 1, 2, 3, 4), when pω(v) is modeled as
(a) σω,1 = σω,2 = 0.2; (b) σω,1 = σω,2 = 0.8; (c) σω,1 = 0.8, σω,2 = 0.2, at various {µω,1,
µω,2} locations: µω,1, µω,2 ∈ [−2 2]. The detection rate ranges from 0 (black) to 1 (white).
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Figure 7.8: The relations between d̄ω and δω when the genuine user PDF pω is modeled as
with µω,1, µω,2 ∈ [−2 2] and four σω,1, σω,2 settings. The result is shown as (a) 1-bit APQ;
(b) 2-bit APQ.
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Figure 7.9: The detection rate ratio δAPQ/δFQ of the 2-bit APQ to the 1-bit FQ (b = 1),
when pω(v) is modeled as (a) σω,1 = σω,2 = 0.2; (b) σω,1 = 0.8, σω,2 = 0.2, with various
µω,1, µω,2 locations: µω,1, µω,2 ∈ [−1.6 1.6]. The detection rate ratio ranges from 1 (black)
to 2 (white).

performance, when every feature pair is quantized by a b-bit APQ. Assuming that the
D/2 feature pairs are statistically independent, we know from [45] that when applying
a Hamming distance classifier, zero Hamming distance threshold gives a lower bound
for both the detection rate and the FAR. Therefore, we decide to optimize this lower
bound classification performance.

Let cω,k, (k = 1, . . . , D/2) be the kth pair of feature indices, and {cω,k} a valid
pairing configuration containingD/2 feature index pairs such that every feature index
only appears once. For instance, cω,k = (1, 1) is not valid because it contains the same
feature and therefore cannot be included in {cω,k}. Also, {cω,k} = {(1, 2), (1, 3)} is not
a valid pairing configuration because the index value ‘1’ appears twice. The overall
FAR (αω) and the overall detection rate (δω), at zero Hamming distance threshold
are:

αω

(
{cω,k}

)
=

D/2∏

k=1

αω,k

(
cω,k

)
, (7.13)

δω
(
{cω,k}) =

D/2∏

k=1

δω,k

(
cω,k

)
, (7.14)

where αω,k and δω,k are the FAR and the detection rate for the kth feature pair,
computed from (7.6) and (7.8). Furthermore, according to (7.6), αω becomes:

αω = 2−L , (7.15)

which is independent of {cω,k}. Therefore, we only need to search for a user-specific
pairing configuration {c∗ω,k}, that maximizes the overall detection rate in (7.14). Solv-
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ing the optimization problem is formulated as:

{c∗ω,k} = arg max
{cω,k}

D/2∏

k=1

δω
(
cω,k

)
. (7.16)

The detection rate δω given a feature pair cω,k is computed from (7.8). Consid-
ering that the performance at zero Hamming distance threshold indeed pinpoints the
minimum FAR and detection rate value on the receiver operating characteristic curve
(ROC), optimizing such point in (7.16) essentially provides a maximum lower bound
for the ROC curve.

7.3.3.2 Long-short Pairing

There are two problems in solving (7.16): First, it is often not possible to compute
δcω,k

in (7.8), due to the difficulties in estimating the genuine user PDF pω. Ad-
ditionally, even if the δcω,k

can be accurately estimated, a brute-force search would

involve 2−D/2 D!
(D/2)! evaluations of the overall detection rate, which renders a brute-

force search unfeasible for realistic values of D. Therefore, we propose to simplify the
problem definition in (7.16) as well as the optimization searching approach.

Simplified problem definition: In Section 7.2.2 we observed a useful relation
between d̄ and δ for the APQ: A feature pair with a higher d̄ would approximately
also obtain a higher detection rate δω for APQ. Therefore, we simplify (7.16) into:

{c∗ω,k} = arg max
{cω,k}

D/2∏

k=1

d̄ω(cω,k) , (7.17)

with d̄ω(cω,k) defined in (7.12). Furthermore, instead of brute force searching, we
propose a simplified optimization searching approach: the long-short (LS) pairing
strategy.
Long-short (LS) pairing: For the genuine user ω, sort the set {dω,i =
abs(µω,i/σω,i) : i = 1, . . . , D} from largest to smallest into a sequence of ordered
feature indices {Iω,1, Iω,2, . . . , Iω,D}. The index for the kth feature pair is then:

cω,k = (Iω,k, Iω,D+1−k), k = 1, . . . , D/2 . (7.18)

The computational complexity of the LS pairing is only O(D). Additionally, it
is applicable to arbitrary feature types and independent of the number of quantiza-
tion bits b. Note that this LS pairing is similar to the pairing strategy proposed in
[57], where Euclidean distances are used. In fact, there are other alternative pairing
strategies, for instance greedy or long-long pairing [57]. However, in terms of the
entire binary string performance, these methods are not as good as the approach pre-
sented in this paper, especially when D is large. Therefore, in this paper, we choose
the long-short pairing strategy, providing a compromise between the classification
performance and computational complexity.
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7.2.4 Experiments

In this section we test the pairwise phase quantization (LS+APQ) on real data. First
we present a simplified APQ, which is employed in all the experiments. Afterwards,
we verify the relation between d̄ and δ for real data. We also show some examples of
LS pairing results. Then we investigate the verification performances while varying
the input feature dimensions (D) and the number of quantization bits per feature pair
(b). The results are further compared to the one-dimensional fixed quantization (1D
FQ) [39] as well as the the FQ in combined with the DROBA bit allocation principle
(FQ+DROBA).

7.3.4.1 Experimental Setup

We tested the pairwise phase quantization on two real data sets: the FVC2000(DB2)
fingerprint database [35] and the FRGC(version 1) face database [37].

• FVC2000: The FVC2000(DB2) fingerprint data set contains 8 images of 110
users. The features were extracted in a fingerprint recognition system that was
used in [22]. As illustrated in Fig. 7.10, the raw features contain two types of
information: the squared directional field in both x and y directions, and the
Gabor response in 4 orientations (0, π/4, π/2, 3π/4). Determined by a regular
grid of 16 by 16 points with spacing of 8 pixels, measurements are taken at 256
positions, leading to a total of 1536 elements.

• FRGC: The FRGC(version 1) face data set contains 275 users with a different
number of images per user, taken under both controlled and uncontrolled con-
ditions. The number of samples s per user ranges from 4 to 36. The image size
was 128× 128. From that a region of interest (ROI) with 8762 pixels was taken
as illustrated in Fig. 7.11.

Figure 7.10: (a) Fingerprint image, (b) directional field, (c)-(f) the absolute values of
Gabor responses for different orientations θ.



7.2. Binary biometric representation through pairwise adaptive phase
quantization 123

Figure 7.11: (a) Controlled image, (b) uncontrolled image, (c) landmarks and (d) the region
of interest (ROI).

A limitation of biometric compression or protection is that it is not possible to
conduct the user-specific image alignment, because the image or other alignment in-
formation can not be stored. Therefore, in this paper, we applied basic absolute
alignment methods: The fingerprint images are aligned according to a standard core
point position; The face images are aligned according to a set of four standard land-
marks, i.e. eyes, nose and mouth.

We randomly selected different users for training and testing and repeated our
experiments with a number of trials. The data division is described in Table 7.2,
where s is the number of samples per user that varies in the experiments.

Table 7.2: Data division: number of users×number of samples per user(s), and the number
of trials for FVC2000 and FRGC. The s is a parameter that varies in the experiments.

Training Enrollment Verification Trials
FVC2000 80× 8 30× 6 30× 2 20
FRGC 210× s 65× 2s/3 65× s/3 5

Our experiments involved three steps: training, enrollment and verification. (1) In
the training step, we first applied a combined PCA/LDAmethod [42] on a training set.
The obtained transformation was then applied to both the enrollment and verification
sets. We assume that the measurements have a Gaussian density, thus after the PCA
transformation, the extracted features are assumed to be statistically independent.
The goal of applying PCA/LDA in the training step is to extract independent features
so that by pairing them we could subsequently obtain independent feature pairs,
which meet our problem requirements. Note that for FVC2000, since we have only
80 users in the training set, applying LDA results in very limited number of features
(e.g. D ≤ 79). Therefore, we relax the independency requirement for the genuine
user by applying only the PCA transformation. (2) In the enrollment step, for every
genuine user ω, the LS pairing was first applied, resulting in the user-specific pairing
configuration {c∗ω,k}. The pairwise features were further quantized through a b-bit
APQ with the adaptive angle {ϕ∗

ω,k}, and assigned with a Gray code [44]. The
concatenation of the codes from D/2 feature pairs formed the L-bit target binary
string Sω. Both Sω and the quantization information ({c∗ω,k}, {ϕ

∗
ω,k}) were stored for

each genuine user. (3) In the verification step, the features of the query user were
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quantized and coded according to the quantization information ({c∗ω,k}, {ϕ
∗
ω,k}) of the

claimed identity, leading to a query binary string S′. Finally, the decision was made
by comparing the Hamming distance between the query and the target string.

7.3.4.2 Simplified APQ

In practice, computing the optimal offset angle ϕ∗
ω for APQ in (7.7) is difficult, because

it is hard to find a closed-form solution ϕ∗
ω . Besides, it is often impossible to accurately

estimate the underlying genuine user PDF pω, due to the limited number of available
samples per user. Therefore, instead of ϕ∗

ω, we propose an approximate solution ϕ′
ω.

For genuine user ω, let the mean of the two-dimensional feature vector be {µω,1, µω,2},
and its phase be θ̄ω = angle(µω,1, µω,2), the approximate offset angle ϕ′

ω is then
computed as:

ϕ′
ω = θ̄ω −

ξ

2
, (7.19)

where ξ = 2π/2b. We give an illustration of computing ϕ′
ω in Fig. 7.12. The approx-

imate solution ϕ′
ω in fact maximizes the product of two Euclidean distances, namely,

the distance of the mean vector {µω,1, µω,2} to both the lower and the higher genuine
interval boundaries.

v1

v2

0

φ
ω

’

q
ω

Figure 7.12: An example of a 2-bit simplified APQ, with the background PDF (blue) and
the genuine user PDF (red). The dashed lines are the quantization boundaries.

Note that when the two features have independent Gaussian density with equal
standard deviation, ϕ∗

ω = ϕ′
ω . Thus, in that case, the simplified APQ equals the

original APQ. In Fig. 7.13, we illustrates an example of the detection rate ratio
between the simplified and the original APQ, where both features are modeled as
Gaussian with different standard deviations, e.g. σω,1 = 0.2, σω,2 = 0.8. The white
pixels represent high values whilst the black pixels represent low values. Results show
that the simplified APQ is only slightly worse than the original APQ when the mean
of the two-dimensional feature {µω,1, µω,2} is close to the origin. However, if we apply
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Figure 7.13: The detection rate ratio bwteeen the original 2-bit APQ and the simplified
APQ, when pω(v) is modeled as σω,1 = 0.2, σω,2 = 0.8, with various µω,1, µω,2 locations:
µω,1, µω,2 ∈ [−1.6 1.6]. The detection rate ratio scale is [1 2.2].

APQ after the LS pairing, we would expect that the overall selected pairwise features
are located farther away from the origin. In such cases, the simplified APQ works
almost the same as the original APQ. In Fig. 7.14 we illustrate the differences of
the rotation angle between the original APQ and the simplified APQ, computed from
(7.7) and (7.19) respectively. These differences are computed from 50 feature pairs for
both FVC2000 and FRGC. The results show that there is no much differences between
the rotation angle. Additionally, the simplified APQ is much simpler, avoiding the
problem of estimating the underlying genuine user PDF pω. For these reasons, we
employed this simplified APQ in all the following experiments (Section 7.2.4 to 7.2.4).
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Figure 7.14: The differences of the rotation angle between the original APQ and the sim-
plified APQ (ϕ∗

ω − ϕ′

ω), computed from 50 feature pairs, for (a) FVC2000 and (b) FRGC.
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7.3.4.3 APQ d̄-δ Property

In this section we test the relation between the APQ detection rate δω and the pairwise
feature’s distance d̄ω on both data sets. The goal is to see whether the real data
exhibit the same d̄ω − δω property as we found with synthetic data in Section 7.2.2:
The feature pairs with higher d̄ω obtains higher detection rate δω.

During the enrollment, for every genuine user, we conducted a random pairing.
For every feature pair, we computed their d̄ω value according to (7.12). Afterwards,
we applied the b-bit APQ quantizer to every feature pair. In the verification, for
every feature pair, we computed the Hamming distance between the b-bits from the
genuine user and the b-bits from the imposters. That is, we count as a detection if the
b-bit genuine query string obtains zero Hamming distance as compared to the target
string. Similarly, we count as a false acceptance if the b-bit imposter query string
obtains zero Hamming distance as compared to the target string. We then repeated
this process over all feature pairs as well as all genuine users, in order to ensure that
the results we obtain are neither user or feature biased. Finally, in Fig. 7.15, we plot
the relations between the d̄ω and the δω. The points we plot are averaged according
to the bins of d̄ω, when b = 2. Results show that for the real data, the larger d̄ω is,
consistently the higher detection rate we obtain. Additionally, the FAR performance
is indeed independent of pairing, and equals the theoretical value 2−b.

7.3.4.4 LS Pairing Performance

In this section we test the LS pairing performances. We give an example of FVC2000
at D = 50. Figure 7.16(a) shows the histogram of d for all single features over all the
genuine users. Around 70% of them are close to zero, suggesting low quality features.
After LS pairing, the histogram of the pairwise d̄ values are shown in Fig. 7.16(b),
as compared with the random pairing. In Fig. 7.16(c), we illustrate the 25 pairwise
features in terms of independent Gaussian densities, for one specific genuine user.
Fig. 7.16(b) and 7.16(c) shows that after LS pairing, a large proportion of feature
pairs have relatively moderate ‘size’ densities and moderate d̄ values. Thus it avoids
small d̄ values and effectively maximizes (7.17).

7.3.4.5 Verification Performance

We test the performances of LS+APQ at various numbers of input features D, as well
as various numbers of quantization bits b ∈ {1, . . . , 6}. The performances are further
compared with the one-dimensional fixed quantization (1D FQ) [39]. The EER results
for FVC2000 and FRGC are shown in Table 7.3 and Fig. 7.17.

Both data sets show that by increasing the number of features D at a fixed b-bit
quantization per feature pair, the performances of LS+APQ improves and becomes
stable. Additionally, given D features, the overall performances of LS+APQ are
relatively good only when b ≤ 3. However, when b ≥ 4, the performances become
poor. For FVC2000, an average of 1-bit per feature pair gives the lowest EER, while
for FRGC, the lowest EER allows 2-bit per feature pair. In Fig. 7.18, we give
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Figure 7.15: The averaged value of the detection rate and the FAR that correspond to the
bins of d̄, derived from the random pairing and the 2-bit APQ, for (a) FVC2000 and (b)
FRGC.
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Figure 7.16: An example of the LS pairing performance on FVC2000, at D = 50. (a) the
histogram of d = abs(µ/σ); (b) the histogram of d̄ for pairwise features and (c) an illustration
of the pairwise features as independent Gaussian density, from both LS and random pairing.
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their FAR/FRR performances at the best D, with b from 1 to 4, and the FAR/FRR
performances at the best b are given in Table 7.4.
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Figure 7.17: The EER performances of b-bit (b ∈ [1 6]) LS+APQ at various feature dimen-
sionality D, as compared with the b/2-bit 1D FQ (b-bit per feature pair), for (a) FVC2000,
and (b) FRGC.

10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FVC2000, D
PCA

=D=300

FAR

F
R

R

 

 
b=1
b=2
b=3
b=4

(a)

10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FRGC, D
PCA

=500, D
LDA

=D=120

FAR

F
R

R

 

 

b=1
b=2
b=3
b=4

(b)

Figure 7.18: An example of the FAR/FRR performances (FAR in logarithm) of LS+APQ,
with b from 1 to 4, for (a) FVC2000 and (b) FRGC.

We further compare the LS+APQ with the 1D FQ. In order to compare at the
same string length, we compare the b/2-bit 1D FQ with the b-bit LS+APQ. The EER
performances in Fig. 7.17 show that in general when b ≤ 3, LS+APQ outperforms
1D FQ. However, when b ≥ 4, LS+APQ is no longer competitive to 1D FQ. In Fig.
7.19, we give an example of comparing the FAR/FRR performances of LS+APQ and
1D FQ, on FRGC. Since both APQ and FQ provide equal-probability intervals, they
yield almost the same FAR performance. On the other hand, LS+APQ obtains lower
FRR as compared with 1D FQ.
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Table 7.3: The EER performances of LS+APQ and 1D FQ, at various feature dimension-
ality D and various numbers of quantization bits b, for (a) FVC2000 and (b) FRGC.

FVC2000 DPCA = D, EER=(%)
D = 50 100 150 200 250 300

LS+APQ

b = 1 4.4 2.8 2.0 1.9 1.8 1.9
b = 2 4.6 3.0 2.0 2.1 1.7 1.6
b = 3 6.4 3.7 2.8 2.6 2.5 2.7
b = 4 8.2 5.9 4.6 3.4 3.2 3.3
b = 5 10.0 6.6 5.9 4.4 4.0 3.7
b = 6 11.4 7.1 6.6 5.4 4.7 4.7

1D FQ
b = 1 6.7 4.0 2.9 2.6 2.7 2.3
b = 2 7.5 5.3 4.2 3.6 3.6 3.6
b = 3 9.2 6.4 5.5 5.0 5.2 4.9

(a)

FRGC DPCA = 500, DLDA = D, EER=(%)
D = 50 80 100 120 150 180 200

LS+APQ

b = 1 4.0 3.4 3.0 2.6 2.9 2.7 2.7
b = 2 3.5 3.0 2.8 2.3 2.8 2.7 2.9
b = 3 4.7 4.1 3.7 3.4 3.3 3.6 3.9
b = 4 6.7 5.9 5.0 4.8 4.7 5.0 5.2
b = 5 8.1 7.0 6.3 6.1 6.5 6.6 6.4
b = 6 10.1 8.6 7.5 7.2 7.2 7.4 7.6

1D FQ
b = 1 5.7 4.7 4.2 4.0 4.1 4.1 4.2
b = 2 5.1 5.4 5.1 5.0 5.2 5.9 6.1
b = 3 6.5 6.5 6.4 6.2 6.5 6.9 7.3

(b)

Table 7.4: The FAR/FRR performances for FVC2000 and FRGC at the best D-L setting.

FRR (%) FAR = 10−4 10−3 10−2

FVC2000, D = 300, L = 300 17.2 9.6 2.6
FRGC, D = 120, L = 120 14.7 8.2 3.7
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Figure 7.19: An example of the FAR/FRR performances of LS+APQ and 1D FQ, at
D = 120, L = 120 for FRGC.

In [45], it was shown that FQ in combination with the DROBA adaptive bit allo-
cation principle (FQ+DROBA) provides considerably good performances. Therefore,
we compare the LS+APQ with the FQ+DROBA. In order to compare both meth-
ods at the same D-L setting, for LS+APQ, we extract only 2K features from the
D features, thus K pairs from the LS pairing. Afterwards, we apply the 2-bit APQ
for every feature pair (see Fig. 7.5). In this case, K = L/2. Table 7.5 shows the
EER performances of LS+APQ and FQ+DROBA at several different D-L settings.
Results show that LS+APQ obtains slightly better performances than FQ+DROBA.

Table 7.5: The EER performances of LS+APQ and FQ+DROBA, at at several D-L set-
tings, for (a) FVC2000 and (b) FRGC.

FVC2000 D = 250, EER=(%)
L = 50 L = 100 L = 150

LS+APQ 2.3 1.7 1.9
FQ+DROBA 2.4 2.1 2.2

(a)

FRGC D = 120, EER=(%)
L = 60 L = 90 L = 120

LS+APQ 2.3 2.4 2.3
FQ+DROBA 2.4 2.6 2.8

(b)
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7.2.5 Discussion

Essentially, the pairwise phase quantization involves two user-specific adaptation
steps: the long-short (LS) pairing, as well as the adaptive phase quantization (APQ).
From the pairing’s perspective, although we only quantize the phase, the magnitude
information (i.e. the feature mean) is not discarded. Instead, it is employed in the LS
pairing strategy to facilitate extracting distinctive phase bits. Additionally, although
with low computational complexity, the LS pairing strategy is effective for arbitrary
feature densities. From the quantizer’s perspective, quantizing in phase domain has
the advantage that a circularly symmetric two-dimensional feature density results in
a simple uniform phase density. Additionally, we apply user-specific phase adapta-
tion. As a result, the extracted phase bits are not only distinctive but also robust
to over-fitting. However, the experimental results imply that such advantages only
exist when b ≤ 3. To summarize, as illustrated in Fig. 7.20, the LS pairing is a
user-specific resampling procedure that provides simple unform but distinctive phase
densities. The APQ further enhances the feature distinctiveness by adjusting the
user-specific phase quantization intervals.

7.2.6 Conclusion

Extracting binary biometric strings is a fundamental step in biometric compression
and template protection. Unlike many previous work which quantize features indi-
vidually, in this paper, we propose a pairwise adaptive phase quantization (APQ),
together with a long-short (LS) pairing strategy, which aims to maximize the overall
detection rate. Experimental results on the FVC2000 and the FRGC database show
reasonably good verification performances.

7.3 Chapter conclusion

In this chapter, we present a pairwise adaptive phase quantizer (APQ), together with
a long-short (LS) pairing strategy. Regarding the research objectives, APQ is capable
of extracting multiple i.i.d. bits. With adjusted quantization intervals, APQ extracts
more reliable bits than the user-independent phase quantizer as described in Chapter
6. As a result, APQ and LS pairing gives better FAR and FRR performances. With
more reliable bits extracted from the user-dependent feature pairs, the length of the
random key K can be increased.
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Figure 7.20: An example of the feature density based on LS pairing and APQ. (a) the
two-dimensional feature density; (b) the density of v1; (c) the density of v2; (d) the pairwise
phase density of {v1 v2}, with the adaptive quantization boundaries (dashed line).
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8
Conclusions

8.1 Research objectives

The context of this research is the development of a generic template protection
scheme for biometric verification applications. The Helper Data scheme is chosen as
a vehicle in this research. The whole template protection system is divided into three
functional modules: feature extraction, reliable bit extraction and secure key binding
verification. Reliable bit extraction is crucial for the template protection performance.
Therefore, it is the main purpose of this research.

The research question addressed in this thesis is:
How can real-valued biometric features, in a Helper Data scheme based
template protection system, be converted to a binary string, with the
following requirements?

I. Since we adopt the Helper Data scheme, the binary strings extracted from the
real-valued biometric features should be of fixed-length.

II. In order to maximize the attacker’s efforts in guessing the target template, the
bits should be statistically independent and identically distributed (i.i.d.).

III. In order to maximize the length of the random key, the extracted bits should be
as reliable as possible, i.e. for a given user the probability of bit errors should
be as low as possible.

IV. The verification via binary strings should not degrade the FAR and the FRR
performances.

Each of these requirements is translated into a corresponding research objective.
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8.2 Contributions

The main contributions of the thesis involve two aspects: (1) how to optimize the
quantization intervals for the biometric features and (2) how to allocate the bits to
the features. Chapters 2 to 7 present methods regarding these two aspects.

In Chapter 2, two one-dimensional quantizers, the fixed quantizer (FQ) and the
likelihood ratio based quantizer (LQ), are presented. Both quantizers are able to
extract multiple bits per biometric feature. The FQ determines the quantization in-
tervals merely by equally dividing the probability mass of the background probability
density function (PDF). The LQ determines the quantization intervals from the likeli-
hood ratio between the genuine user PDF and the background PDF of the feature. As
a result, both quantizers are able to extract i.i.d. bits. Superior to FQ, LQ optimizes
the theoretical FRR of a feature, given a prescribed number of quantization bits.

In Chapter 3, the detection rate optimized bit allocation (DROBA) principle is
presented. Subject to a prescribed total length of the binary string, DROBA assigns
user-dependent numbers of bits to every feature, in such way that the theoretical
overall detection rate at zero Hamming distance threshold for a HDC is optimized.
Both a dynamic programming and a greedy approach are then proposed to search
for the optimal solution. Compared to quantizing every feature into a prescribed
fixed number of bits, combining quantizers with DROBA yields better FAR and FRR
performances of the entire binary strings.

In Chapter 4, the area under the FRR curve optimized bit allocation (AUF-OBA)
principle is presented. Given the bit error probabilities of the biometric features,
AUF-OBA assigns user-dependent numbers of bits to every feature, in such way that
the theoretical area under the FRR curve for a HDC is minimized. A dynamic pro-
gramming approach is then proposed to search for the optimal solution. Superior to
DROBA, AUF-OBA optimizes the overall FRR performances, rather than the FRR
at zero Hamming distance threshold.

In Chapter 5, the weighted area under the FRR curve optimized bit allocation
(WAUF-OBA) principle is presented. Given the bit error probabilities of the biometric
features, WAUF-OBA assigns user-dependent numbers of bits to every feature, in such
way that the theoretical weighted area under the FRR curve for a HDC is minimized.
Depending on the value of the parameter in the weighting function, different ranges
of the Hamming distance thresholds are emphasized, which makes WAUF-OBA a
generalization of DROBA and AUF-OBA. Superior to DROBA or AUF-OBA, WAUF-
OBA optimizes the overall FRR performances in the emphasized range of Hamming
distance thresholds.

In Chapter 6, a two-dimensional pairwise polar quantizer that quantizes the mag-
nitude or the phase is introduced. Quantization intervals are dependent on the back-
ground PDFs of the pairwise features in either domain. Furthermore, aiming to
optimize the discrimination between the genuine Hamming distance (GHD) distribu-
tion and the imposter Hamming distance (IHD) distribution, two heuristic feature
pairing strategies are proposed: the long-short (LS) strategy for the phase quanti-
zation, as well as the long-long (LL) strategy for the magnitude quantization. The
phase quantizer combined with the LS pairing gives low FAR and FRR performances.
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In Chapter 7, a two-dimensional pairwise adaptive phase quantizer (APQ), to-
gether with an improved long-short (LS) pairing strategy, is presented. The APQ
adjust the phase quantization intervals in order to maximize the theoretical detection
rate of a given feature pair. The LS pairing strategy composes feature pairs in order
to maximize the overall detection rate, for the total binary strings, at zero Hamming
distance threshold. With APQ and LS pairing, the extracted binary strings obtain
better FAR and FRR performances than the phase quantizer without adjustment in
Chapter 6.

8.3 Discussion of achievements

To summarize, in this thesis, we present solutions to extract bits from biometric
features. These solutions range from quantizers that extract bits from a feature or
feature pair, to the bit allocation principles that assign user-dependent numbers of
bits to every feature. The properties of these solutions regarding the defined research
objectives are summarized in Table 8.1 and 8.2.

Regarding research objective I, both the one-dimensional quantizers (FQ, LQ)
and the two-dimensional quantizers (polar quantizer, APQ) are capable of extracting
a fixed number of bits per feature or feature pair. While the length of the total binary
string is fixed, all three bit allocation principles (DROBA, AUF-OBA, WAUF-OBA)
are capable of assigning user-dependent numbers of bits to every feature.

To extract i.i.d. bits, as required in research objective II, all the quantizers
determine quantization intervals of equal background probability. The bit allocation
principles, on the other hand, are independent of the quantization intervals. Hence,
the bit allocation principles preserve the i.i.d. bits property of the binary strings.
Furthermore, by giving equal-probability quantization intervals, the theoretical FAR
for a HDC, as required in the research objective IV, is then fixed.

Optimizing the theoretical FRR at the fixed FAR, or equivalently extracting reli-
able bits, is the main task for research objective III and IV. For one-dimensional
quantizer FQ, FRR optimization is not considered for every feature. Superior to FQ,
LQ minimizes the FRR at zero Hamming distance per feature. In case of the two-
dimensional phase or magnitude quantizer, although the quantization intervals do not
optimize the FRR per feature pair, the configurations of the feature pairs (LS and LL
pairing) optimize the overall FRR binary string performance of its quantizer. On real
data experiments, however, only the phase quantizer combined with LS pairing gives
good recognition performances. Therefore, in the next step, APQ improves the phase
quantizer by optimizing the FRR per feature pair. Compared to one-dimensional
quantizers (e.g. FQ and LQ), APQ with LS pairing has the advantage that adaptive
quantization intervals in the phase domain might extract more reliable bits, and the
pairing strategy compose feature pairs to optimize the overall FRR.

Instead of pairing, a solution to optimize the overall FRR in case of the one-
dimensional quantization is to apply bit allocation principles: DROBA optimizes the
overall FRR at zero Hamming distance threshold. Superior to DROBA, AUF-OBA
optimizes the overall FRR over all Hamming distance thresholds, or equivalently,
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Table 8.1: The solutions and their properties to the defined research objectives. dH refers to the Hamming distance.

Objective Solutions Properties
I. FQ and LQ

Fixed-length per feature or feature pair

Fixed-length

Polar quantizer
APQ
DROBA

Fixed-length of the total binary stringAUF-OBA
WAUF-OBA

II. FQ and LQ
i.i.d. bits per feature or feature pair

i.i.d. bits

Polar quantizer
APQ
DROBA

Preserve the i.i.d. bits extracted from the quantizersAUF-OBA
WAUF-OBA

III. FQ Not considered

Reliable bits

LQ Minimize the FRR at dH = 0 per feature
Polar quantizer Minimize the FRR of the binary string via pairing
APQ Minimize the FRR at dH = 0 of the binary string via APQ and pairing
DROBA Minimize the FRR at dH = 0 of the binary string
AUF-OBA Minimize the area under the FRR curve of the binary string
WAUF-OBA Minimize the weighted area under the FRR curve of the binary string
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Table 8.2: ( cont’d) The solutions and their properties to the defined research objectives. dH refers to the Hamming distance.

Objective Solutions Properties
IV. FQ and LQ

Fixed FAR due to i.i.d. bits

FAR

Polar quantizer
APQ
DROBA

Preserve the fixed FARAUF-OBA
WAUF-OBA

IV. FQ Not considered

FRR

LQ Minimize the FRR at dH = 0 per feature
Polar quantizer Minimize the FRR of the total binary string via pairing
APQ Minimize the FRR at dH = 0 of the binary string via APQ and pairing
DROBA Minimize the FRR at dH = 0 of the binary string
AUF-OBA Minimize the area under the FRR curve of the binary string
WAUF-OBA Minimize the weighted area under the FRR curve of the binary string
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the area under the FRR curve. WAUF-OBA then optimizes the overall FRR with
emphasis on a range of Hamming distance thresholds. WAUF-OBA in fact is a gen-
eralization of DROBA and AUF-OBA. Combined with one-dimensional quantizers,
the bit allocation principles improves the overall FRR of the total binary strings. Al-
though bit allocation principles can also be applied with the two-dimensional phase
quantizer, we show that LS pairing strategy has achieved equivalently good perfor-
mances. Therefore, in the thesis, bit allocation principles are not presented in the
two-dimensional quantization scheme.

In practical applications, the choice of the appropriate bit extraction solutions
depends on the properties of the data as well as the application context. The more
optimal solutions, e.g. LQ, AUF-OBA, WAUF-OBA, also require more accurate mod-
eling of the feature distributions and more computational complexity, which are often
difficult to achieve in practical applications. Considering such trade-off, we recom-
mend FQ and DROBA for the one-dimensional quantization scheme, which gives a
roughly accurate and optimal solution. In case of the two-dimensional quantization
scheme, we recommend APQ combined with LS pairing.

8.4 Future work

The main objective of the thesis is to extract biometric binary strings from real-valued
features, leaving independent, discriminative and reliable biometric features an im-
portant assumption in the research. Unfortunately, in practice, most of the biometric
features retain large intra-class variations. Consequently, the extracted bits are still
error-prone, even though the quantization and coding procedure is well-designed. If
the bits are less reliable, an advanced ECC is required, otherwise the number of se-
crets dramatically decreases. Another weak point is that the bit extraction procedure
relies on the user-dependent feature distributions. However, in most of the current
systems, only a few samples are captured for every enrolled user, making it difficult
to accurately estimate the feature distributions. For these reasons, the future work
will focus on the following aspects:

• Improving feature quality Higher feature quality directly gives more reliable
features and therefore benefits in reliable bits. The straightforward solution to
improve the feature quality is to optimize the biometric capture procedure. For
instance, to provide a more controlled verification environment, or to improve
the quality of the features that are captured, by enhancing both the hardware
and the software of the biometric sensors. An alternative solution is to intro-
duce a quality control step. Finally, despite the common PCA or LDA feature
reduction methods, it is possible to employ some other methods to extract more
reliable features.

• Improving the modeling of the feature distributions Optimal quantiza-
tion intervals and bit allocation are dependent on the biometric feature distri-
butions, which are estimated from the samples of the enrolled users. However,
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in practice, it is impossible to obtain a sufficiently large number of samples dur-
ing the enrollment. Further work would be to define, for every user, a proper
number of samples required for a good estimation. As a result, the number of
samples required could vary from user to user. Furthermore, an adaptive system
could be employed to gradually enrich the modeling of the feature distributions.

• Designing ECC An ECC that can recover more erroneous bits will give better
recognition performance as well as more secret bits. Therefore, according to the
bit error probabilities of the biometric features, an advanced ECC is desirable.

• Comparing or employing multiple biometric modalities In addition to
the template protection purpose, extracting biometric binary strings enables
the opportunity to compute and compare the capacities of different biometric
modalities. For instance, how many secret bits does this biometric fingerprint
application really have? as compared to the other application? Furthermore, for
a single biometric modality, the number of secret bits is relatively low. Thus,
employing multiple biometric modalities might increase the number of secret
bits.
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A
Proving Optimal of the Dynamic

Programming Approach

The question has to be answered whether the dynamic programming approach pre-
sented above will lead to the optimal bit assignment. The proof is as follows. Denote
the optimal bit allocation over D′ features by

{b̂i(l)} = arg max
bi|

∑
bi=l, bi∈{0,...,bmax}

D′∏

i=1

δi(bi),

and denote the maximum obtained by δmax. Assume that we have a partitioning of
the D′ features into two arbitrary sets. The sets are fully characterized by the indices
of the features, so we can speak of the index sets as well. Let M and N denote the
index sets, such that M∩N = ∅ and M∪N = {1, . . . , D′}. Define

δM(l) = max
bi|

∑
bi=l, bi∈{0,...,bmax}

∏

i∈M

δi(bi), l = 0, . . . , |M|bmax,

and
δN (l) = max

bi|
∑

bi=l, bi∈{0,...,bmax}

∏

i∈N

δi(bi), l = 0, . . . , |N |bmax,

Define
l̂M =

∑

i∈M

b̂i(l)

and
l̂N =

∑

i∈N

b̂i(l)
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Appendix A. Proving Optimal of the Dynamic Programming

Approach

Now

max
l′,l′′|l′+l′′=l,l′∈M,l′′∈N

δM(l′)δN (l′′) ≥ δM(l̂M)δN (l̂N )

≥
∏

i∈M

δi(b̂i(l))
∏

i∈N

δi(b̂i(l))

=

D′∏

i=1

δi(b̂i(l))

= δmax.

The left-hand side of this inequality is a product of the form

D′∏

i=1

δi(bi),

with the bi constrained by
∑

bi = l, bi ∈ {0, . . . , bmax}. This cannot, by definition,
be greater than δmax. Therefore, it must be identical to δmax.

Note that the partitioning into index sets M and N was arbitrary. If we take
D′ = j, M = {1, . . . , j− 1}, and N = {j} then we have proved that the jth recursion
step of the above algorithm is optimal.



B
Derivation of the FAR for HDC

In order to prove (4.10), we only need to prove

φi(k; {bj}
D
j=1) = 2−L

(
L
k

)
. (B.1)

Proof. Note that for binomial coefficients

(
m
q

)
and

(
n

p− q

)
Vandermonde’s

identity states that

p∑

q=0

(
m
q

)(
n

p− q

)
=

(
m+ n

p

)
. (B.2)

Thus, for instance, by using (4.9) we obtain

k∑

l=0

Pi,1(l; b1)Pi,2(k − l; b2) =

k∑

l=0

2−b1

(
b1
l

)
2−b2

(
b2

k − l

)

= 2−(b1+b2)

(
b1 + b2

k

)
. (B.3)

Expression (B.3) in fact computes the convolution of the bit error probabilities of
two features. In the case of D features, as in (4.6), φi is the convolution from all
the D features. Therefore, we can apply (B.3) repetitively to all the D features. For

145



146 Appendix B. Derivation of the FAR for HDC

instance, to convolve with the third feature, we have

k∑

m=0

[ m∑

l=0

Pi,1(l; b1)Pi,2(m− l; b2)

]
Pi,3(k −m; b3)

=
k∑

m=0

2−(b1+b2)

(
b1 + b2

m

)
2−b3

(
b2

k −m

)

= 2−(b1+b2+b3)

(
b1 + b2 + b3

k

)
. (B.4)

Applying this convolution for all D features with
∑D

j=1 bj = L, we finally leads to the
desired result in (B.1).

This result can also be found by realizing that, for L i.i.d. bits with error prob-
ability 2−1, the probability of a given set of precisely k bits to be erroneous is 2−L

and that there are

(
L
k

)
possibilities to select k bits.



C
Dynamic Programming Approach for

AUF-OBA

Algorithm 3 The dynamic programming approach to solve AUF-OBA principle.

Input:

D ,L ,Gj(bj), bj ∈ {0, . . . , bmax}, j = 1, . . . , D ,
Initialize:

n = 0 ,

b0(0) = 0 ,

G(0)(0) = 1 ,
while n 6= D do

n = n+ 1 ,

b̂′, b̂′′ = argmaxG(n−1)(b′) +Gn(b
′′) ,

b′ + b′′ = l,
b′ ∈ {0, . . . , (n − 1) × bmax},
b′′ ∈ {0, . . . , bmax}

l = 0, . . . , n× bmax ,

G(n)(l) = G(n−1)(b̂′) +Gn(b̂
′′) ,

bj(l) = bj(b̂
′), j = 1, . . . , n− 1 ,

bn(l) = b̂′′ ,

end while
Output:

{b⋆j} = {bj(L)}, j = 1, . . . , D .

147



148 Appendix C. Dynamic Programming Approach for AUF-OBA



D
Derivation of the Optimization Problem for

WAUF-OBA

We first reformulate β(t; {bi}) in (5.10) into the following expression:

β(t; {bi}) =

L∑

k=0

u(k − (t+ 1))φg(k; {bi}) ,

with

u(k)
def
=

{
1, k ≥ 0 ,
0, k < 0 .

(D.1)

Therefore the weighted area under the FRR curve becomes:

AFRR =

L∑

t=0

z−t
L∑

k=t+1

φg(k; {bi})

=

L∑

t=0

z−t
L∑

k=0

[
u(k − (t+ 1))φg(k; {bi})

]

=

L∑

t=0

L∑

k=0

[
z−tu(k − (t+ 1))φg(k; {bi})

]

=
L∑

k=0

[
φg(k; {bi})

L∑

t=0

z−tu(k − (t+ 1))

]

=

L∑

k=0

[
φg(k; {bi})

k−1∑

t=0

z−t

]
. (D.2)
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Appendix D. Derivation of the Optimization Problem for

WAUF-OBA

D.1 z 6= 1, z > 0

When z 6= 1, z > 0, Eq. (D.2) becomes:

AFRR =

L∑

k=0

[
φg(k; {bi})

1− z−k

1− z−1

]

=
1

1− z−1

L∑

k=0

[
φg(k; {bi})(1 − z−k)

]
. (D.3)

We know that:
L∑

k=0

φg(k; {bi}) = 1 . (D.4)

Therefore, AFRR equals to:

AFRR =
1

1− z−1

[
1−

L∑

k=0

(φg(k; {bi})z
−k)

]
. (D.5)

Hence, the optimization problem in (5.11) is reformulated as:





max
∑L

k=0 −z−kφg(k; {bi}), 0 < z < 1 ,

max
∑L

k=0 z
−kφg(k; {bi}), z > 1 ,

(D.6)

The expression in (D.6) can be seen as the following Z-transform:

X(z) = Z{x[k]} =
L∑

k=0

x[k]z−k , (D.7)

with

x[k] = φg(k; {bi}) . (D.8)

Furthermore, we recall that in (5.5) we have:

φg(k) = (Pg,1 ∗ Pg,2 ∗ . . . ∗ Pg,D)(k) . (D.9)

According to the convolution property of Z-transform, (D.7) can be written as:

X(z) = Z{φg(k; {bi})}

= Z{(Pg,1 ∗ Pg,2 ∗ . . . ∗ Pg,D)(k)}

= Z{Pg,1(k)} · Z{Pg,2(k)} · . . . · Z{Pg,D(k)}}

=

D∏

i=1

[ bi∑

ki=0

Pg,i(ki, bi)z
−ki

]
. (D.10)
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By taking the logarithm of X(z), and let Gi(bi) be a gain factor:

Gi(bi) =





− log

(∑bi
ki=0 z

−kiPg,i(ki, bi)

)
, 0 < z < 1 ,

log

(∑bi
ki=0 z

−kiPg,i(ki, bi)

)
, z > 1 ,

(D.11)

the optimization problem then becomes:

{b∗i } = arg max∑
D
i=1

bi=L

D∑

i=1

Gi(bi) . (D.12)

D.2 z = 1

When z = 1, Eq. (D.2) becomes:

AFRR =
L∑

k=0

kφg(k; {bi}) . (D.13)

Hence, the area under the false-reject rate is the expected value of the number of
bit errors . Furthermore, we know that the k bits errors of a L-bit binary string are
supposed to come from D real-valued features. Thus with ki (i = 1, . . . , D) bits error
per feature. Of course, we have that the expected value of a sum equals the sum of
the expected values. Therefore,

AFRR =
D∑

i=1

bi∑

ki=0

kiPg,i(ki, bi) . (D.14)

Let Gi(bi) be a gain factor:

Gi(bi) = −
bi∑

ki=0

kiPg,i(ki, bi) , (D.15)

the optimization problem then becomes (D.12).

D.3 z → ∞

In an extreme case when z → ∞, Let Gi(bi) be a gain factor:

Gi(bi) = lim
z→∞

log

( bi∑

ki=0

z−kiPg,i(ki, bi)

)

= logPg,i(0, bi) . (D.16)

Therefore, the optimization problem then becomes (D.12).
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